/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2014-2015, Itseez Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /* //////////////////////////////////////////////////////////////////// // // Geometrical transforms on images and matrices: rotation, zoom etc. // // */ #include "precomp.hpp" #include "resize.hpp" #include "opencv2/core/hal/intrin.hpp" namespace cv { namespace opt_LASX { class resizeNNInvokerLASX4 CV_FINAL : public ParallelLoopBody { public: resizeNNInvokerLASX4(const Mat& _src, Mat &_dst, int *_x_ofs, double _ify) : ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), ify(_ify) { } virtual void operator() (const Range& range) const CV_OVERRIDE { Size ssize = src.size(), dsize = dst.size(); int y, x; int width = dsize.width; int avxWidth = width - (width & 0x7); if(((int64)(dst.data + dst.step) & 0x1f) == 0) { for(y = range.start; y < range.end; y++) { uchar* D = dst.data + dst.step*y; uchar* Dstart = D; int sy = std::min(cvFloor(y*ify), ssize.height-1); const uchar* S = src.data + sy*src.step; #ifdef CV_ICC #pragma unroll(4) #endif for(x = 0; x < avxWidth; x += 8) { const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x); __m256i CV_DECL_ALIGNED(64) pixels = v256_lut_quads((schar *)S, (int *)addr).val; __lasx_xvst(pixels, (int*)D, 0); D += 32; } for(; x < width; x++) { *(int*)(Dstart + x*4) = *(int*)(S + x_ofs[x]); } } } else { for(y = range.start; y < range.end; y++) { uchar* D = dst.data + dst.step*y; uchar* Dstart = D; int sy = std::min(cvFloor(y*ify), ssize.height-1); const uchar* S = src.data + sy*src.step; #ifdef CV_ICC #pragma unroll(4) #endif for(x = 0; x < avxWidth; x += 8) { const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x); __m256i CV_DECL_ALIGNED(64) pixels = v256_lut_quads((schar *)S, (int *)addr).val; __lasx_xvst(pixels, (int*)D, 0); D += 32; } for(; x < width; x++) { *(int*)(Dstart + x*4) = *(int*)(S + x_ofs[x]); } } } } private: const Mat& src; Mat& dst; int* x_ofs; double ify; resizeNNInvokerLASX4(const resizeNNInvokerLASX4&); resizeNNInvokerLASX4& operator=(const resizeNNInvokerLASX4&); }; class resizeNNInvokerLASX2 CV_FINAL : public ParallelLoopBody { public: resizeNNInvokerLASX2(const Mat& _src, Mat &_dst, int *_x_ofs, double _ify) : ParallelLoopBody(), src(_src), dst(_dst), x_ofs(_x_ofs), ify(_ify) { } virtual void operator() (const Range& range) const CV_OVERRIDE { Size ssize = src.size(), dsize = dst.size(); int y, x; int width = dsize.width; int avxWidth = width - (width & 0xf); const __m256i CV_DECL_ALIGNED(64) shuffle_mask = _v256_set_b(15,14,11,10,13,12,9,8,7,6,3,2,5,4,1,0, 15,14,11,10,13,12,9,8,7,6,3,2,5,4,1,0); const __m256i CV_DECL_ALIGNED(64) permute_mask = _v256_set_w(7, 5, 3, 1, 6, 4, 2, 0); if(((int64)(dst.data + dst.step) & 0x1f) == 0) { for(y = range.start; y < range.end; y++) { uchar* D = dst.data + dst.step*y; uchar* Dstart = D; int sy = std::min(cvFloor(y*ify), ssize.height-1); const uchar* S = src.data + sy*src.step; const uchar* S2 = S - 2; #ifdef CV_ICC #pragma unroll(4) #endif for(x = 0; x < avxWidth; x += 16) { const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x); __m256i CV_DECL_ALIGNED(64) pixels1 = v256_lut_quads((schar *)S, (int *)addr).val; const __m256i CV_DECL_ALIGNED(64) *addr2 = (__m256i*)(x_ofs + x + 8); __m256i CV_DECL_ALIGNED(64) pixels2 = v256_lut_quads((schar *)S2, (int *)addr2).val; const __m256i h_mask = __lasx_xvreplgr2vr_w(0xFFFF0000); __m256i CV_DECL_ALIGNED(64) unpacked = __lasx_xvbitsel_v(pixels1, pixels2, h_mask); __m256i CV_DECL_ALIGNED(64) bytes_shuffled = __lasx_xvshuf_b(unpacked, unpacked, shuffle_mask); __m256i CV_DECL_ALIGNED(64) ints_permuted = __lasx_xvperm_w(bytes_shuffled, permute_mask); __lasx_xvst(ints_permuted, (int*)D, 0); D += 32; } for(; x < width; x++) { *(ushort*)(Dstart + x*2) = *(ushort*)(S + x_ofs[x]); } } } else { for(y = range.start; y < range.end; y++) { uchar* D = dst.data + dst.step*y; uchar* Dstart = D; int sy = std::min(cvFloor(y*ify), ssize.height-1); const uchar* S = src.data + sy*src.step; const uchar* S2 = S - 2; #ifdef CV_ICC #pragma unroll(4) #endif for(x = 0; x < avxWidth; x += 16) { const __m256i CV_DECL_ALIGNED(64) *addr = (__m256i*)(x_ofs + x); __m256i CV_DECL_ALIGNED(64) pixels1 = v256_lut_quads((schar *)S, (int *)addr).val; const __m256i CV_DECL_ALIGNED(64) *addr2 = (__m256i*)(x_ofs + x + 8); __m256i CV_DECL_ALIGNED(64) pixels2 = v256_lut_quads((schar *)S2, (int *)addr2).val; const __m256i h_mask = __lasx_xvreplgr2vr_w(0xFFFF0000); __m256i CV_DECL_ALIGNED(64) unpacked = __lasx_xvbitsel_v(pixels1, pixels2, h_mask); __m256i CV_DECL_ALIGNED(64) bytes_shuffled = __lasx_xvshuf_b(unpacked, unpacked, shuffle_mask); __m256i CV_DECL_ALIGNED(64) ints_permuted = __lasx_xvperm_w(bytes_shuffled, permute_mask); __lasx_xvst(ints_permuted, (int*)D, 0); D += 32; } for(; x < width; x++) { *(ushort*)(Dstart + x*2) = *(ushort*)(S + x_ofs[x]); } } } } private: const Mat& src; Mat& dst; int* x_ofs; double ify; resizeNNInvokerLASX2(const resizeNNInvokerLASX2&); resizeNNInvokerLASX2& operator=(const resizeNNInvokerLASX2&); }; void resizeNN2_LASX(const Range& range, const Mat& src, Mat &dst, int *x_ofs, double ify) { resizeNNInvokerLASX2 invoker(src, dst, x_ofs, ify); parallel_for_(range, invoker, dst.total() / (double)(1 << 16)); } void resizeNN4_LASX(const Range& range, const Mat& src, Mat &dst, int *x_ofs, double ify) { resizeNNInvokerLASX4 invoker(src, dst, x_ofs, ify); parallel_for_(range, invoker, dst.total() / (double)(1 << 16)); } } } /* End of file. */