/* * Copyright 1993-2010 NVIDIA Corporation. All rights reserved. * * NVIDIA Corporation and its licensors retain all intellectual * property and proprietary rights in and to this software and * related documentation and any modifications thereto. * Any use, reproduction, disclosure, or distribution of this * software and related documentation without an express license * agreement from NVIDIA Corporation is strictly prohibited. */ #if !defined CUDA_DISABLER #include #include "TestIntegralImage.h" template TestIntegralImage::TestIntegralImage(std::string testName_, NCVTestSourceProvider &src_, Ncv32u width_, Ncv32u height_) : NCVTestProvider(testName_), src(src_), width(width_), height(height_) { } template bool TestIntegralImage::toString(std::ofstream &strOut) { strOut << "sizeof(T_in)=" << sizeof(T_in) << std::endl; strOut << "sizeof(T_out)=" << sizeof(T_out) << std::endl; strOut << "width=" << width << std::endl; strOut << "height=" << height << std::endl; return true; } template bool TestIntegralImage::init() { return true; } template bool TestIntegralImage::process() { NCVStatus ncvStat; bool rcode = false; Ncv32u widthII = this->width + 1; Ncv32u heightII = this->height + 1; NCVMatrixAlloc d_img(*this->allocatorGPU.get(), this->width, this->height); ncvAssertReturn(d_img.isMemAllocated(), false); NCVMatrixAlloc h_img(*this->allocatorCPU.get(), this->width, this->height); ncvAssertReturn(h_img.isMemAllocated(), false); NCVMatrixAlloc d_imgII(*this->allocatorGPU.get(), widthII, heightII); ncvAssertReturn(d_imgII.isMemAllocated(), false); NCVMatrixAlloc h_imgII(*this->allocatorCPU.get(), widthII, heightII); ncvAssertReturn(h_imgII.isMemAllocated(), false); NCVMatrixAlloc h_imgII_d(*this->allocatorCPU.get(), widthII, heightII); ncvAssertReturn(h_imgII_d.isMemAllocated(), false); Ncv32u bufSize; if (sizeof(T_in) == sizeof(Ncv8u)) { ncvStat = nppiStIntegralGetSize_8u32u(NcvSize32u(this->width, this->height), &bufSize, this->devProp); ncvAssertReturn(NPPST_SUCCESS == ncvStat, false); } else if (sizeof(T_in) == sizeof(Ncv32f)) { ncvStat = nppiStIntegralGetSize_32f32f(NcvSize32u(this->width, this->height), &bufSize, this->devProp); ncvAssertReturn(NPPST_SUCCESS == ncvStat, false); } else { ncvAssertPrintReturn(false, "Incorrect integral image test instance", false); } NCVVectorAlloc d_tmpBuf(*this->allocatorGPU.get(), bufSize); ncvAssertReturn(d_tmpBuf.isMemAllocated(), false); NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting()); NCV_SKIP_COND_BEGIN ncvAssertReturn(this->src.fill(h_img), false); ncvStat = h_img.copySolid(d_img, 0); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); if (sizeof(T_in) == sizeof(Ncv8u)) { ncvStat = nppiStIntegral_8u32u_C1R((Ncv8u *)d_img.ptr(), d_img.pitch(), (Ncv32u *)d_imgII.ptr(), d_imgII.pitch(), NcvSize32u(this->width, this->height), d_tmpBuf.ptr(), bufSize, this->devProp); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); } else if (sizeof(T_in) == sizeof(Ncv32f)) { ncvStat = nppiStIntegral_32f32f_C1R((Ncv32f *)d_img.ptr(), d_img.pitch(), (Ncv32f *)d_imgII.ptr(), d_imgII.pitch(), NcvSize32u(this->width, this->height), d_tmpBuf.ptr(), bufSize, this->devProp); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); } else { ncvAssertPrintReturn(false, "Incorrect integral image test instance", false); } ncvStat = d_imgII.copySolid(h_imgII_d, 0); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); if (sizeof(T_in) == sizeof(Ncv8u)) { ncvStat = nppiStIntegral_8u32u_C1R_host((Ncv8u *)h_img.ptr(), h_img.pitch(), (Ncv32u *)h_imgII.ptr(), h_imgII.pitch(), NcvSize32u(this->width, this->height)); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); } else if (sizeof(T_in) == sizeof(Ncv32f)) { ncvStat = nppiStIntegral_32f32f_C1R_host((Ncv32f *)h_img.ptr(), h_img.pitch(), (Ncv32f *)h_imgII.ptr(), h_imgII.pitch(), NcvSize32u(this->width, this->height)); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); } else { ncvAssertPrintReturn(false, "Incorrect integral image test instance", false); } NCV_SKIP_COND_END //bit-to-bit check bool bLoopVirgin = true; NCV_SKIP_COND_BEGIN for (Ncv32u i=0; bLoopVirgin && i < h_img.height() + 1; i++) { for (Ncv32u j=0; bLoopVirgin && j < h_img.width() + 1; j++) { if (sizeof(T_in) == sizeof(Ncv8u)) { if (h_imgII.ptr()[h_imgII.stride()*i+j] != h_imgII_d.ptr()[h_imgII_d.stride()*i+j]) { bLoopVirgin = false; } } else if (sizeof(T_in) == sizeof(Ncv32f)) { if (fabsf((float)h_imgII.ptr()[h_imgII.stride()*i+j] - (float)h_imgII_d.ptr()[h_imgII_d.stride()*i+j]) > 0.01f) { bLoopVirgin = false; } } else { ncvAssertPrintReturn(false, "Incorrect integral image test instance", false); } } } NCV_SKIP_COND_END if (bLoopVirgin) { rcode = true; } return rcode; } template bool TestIntegralImage::deinit() { return true; } template class TestIntegralImage; template class TestIntegralImage; #endif /* CUDA_DISABLER */