/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2008-2013, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and / or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_SOFTCASCADE_HPP__ #define __OPENCV_SOFTCASCADE_HPP__ #include "opencv2/core.hpp" #include "opencv2/core/gpumat.hpp" namespace cv { namespace softcascade { // Representation of detectors result. // We assume that image is less then 2^16x2^16. struct CV_EXPORTS Detection { // Creates Detection from an object bounding box and confidence. // Param b is a bounding box // Param c is a confidence that object belongs to class k // Param k is an object class Detection(const cv::Rect& b, const float c, int k = PEDESTRIAN); cv::Rect bb() const; enum {PEDESTRIAN = 1}; ushort x; ushort y; ushort w; ushort h; float confidence; int kind; }; class CV_EXPORTS Dataset { public: typedef enum {POSITIVE = 1, NEGATIVE = 2} SampleType; virtual cv::Mat get(SampleType type, int idx) const = 0; virtual int available(SampleType type) const = 0; virtual ~Dataset(); }; // ========================================================================== // // Public interface feature pool. // ========================================================================== // class CV_EXPORTS FeaturePool { public: virtual int size() const = 0; virtual float apply(int fi, int si, const Mat& channels) const = 0; virtual void write( cv::FileStorage& fs, int index) const = 0; virtual ~FeaturePool(); static cv::Ptr create(const cv::Size& model, int nfeatures, int nchannels ); }; // ========================================================================== // // First order channel feature. // ========================================================================== // class CV_EXPORTS ChannelFeature { public: ChannelFeature(int x, int y, int w, int h, int ch); ~ChannelFeature(); bool operator ==(ChannelFeature b); bool operator !=(ChannelFeature b); float operator() (const cv::Mat& integrals, const cv::Size& model) const; friend void write(cv::FileStorage& fs, const String&, const ChannelFeature& f); friend std::ostream& operator<<(std::ostream& out, const ChannelFeature& f); private: cv::Rect bb; int channel; }; void write(cv::FileStorage& fs, const String&, const ChannelFeature& f); std::ostream& operator<<(std::ostream& out, const ChannelFeature& m); // ========================================================================== // // Public Interface for Integral Channel Feature. // ========================================================================== // class CV_EXPORTS_W ChannelFeatureBuilder : public cv::Algorithm { public: virtual ~ChannelFeatureBuilder(); // apply channels to source frame CV_WRAP_AS(compute) virtual void operator()(InputArray src, OutputArray channels, cv::Size channelsSize = cv::Size()) const = 0; CV_WRAP virtual int totalChannels() const = 0; virtual cv::AlgorithmInfo* info() const = 0; CV_WRAP static cv::Ptr create(const String& featureType); }; // ========================================================================== // // Implementation of soft (stageless) cascaded detector. // ========================================================================== // class CV_EXPORTS_W Detector : public cv::Algorithm { public: enum { NO_REJECT = 1, DOLLAR = 2, /*PASCAL = 4,*/ DEFAULT = NO_REJECT}; // An empty cascade will be created. // Param minScale is a minimum scale relative to the original size of the image on which cascade will be applied. // Param minScale is a maximum scale relative to the original size of the image on which cascade will be applied. // Param scales is a number of scales from minScale to maxScale. // Param rejCriteria is used for NMS. CV_WRAP Detector(double minScale = 0.4, double maxScale = 5., int scales = 55, int rejCriteria = 1); CV_WRAP virtual ~Detector(); cv::AlgorithmInfo* info() const; // Load soft cascade from FileNode. // Param fileNode is a root node for cascade. CV_WRAP virtual bool load(const FileNode& fileNode); // Load soft cascade config. CV_WRAP virtual void read(const FileNode& fileNode); // Return the vector of Detection objects. // Param image is a frame on which detector will be applied. // Param rois is a vector of regions of interest. Only the objects that fall into one of the regions will be returned. // Param objects is an output array of Detections virtual void detect(InputArray image, InputArray rois, std::vector& objects) const; // Param rects is an output array of bounding rectangles for detected objects. // Param confs is an output array of confidence for detected objects. i-th bounding rectangle corresponds i-th confidence. CV_WRAP virtual void detect(InputArray image, InputArray rois, OutputArray rects, OutputArray confs) const; private: void detectNoRoi(const Mat& image, std::vector& objects) const; struct Fields; Fields* fields; double minScale; double maxScale; int scales; int rejCriteria; }; // ========================================================================== // // Public Interface for singe soft (stageless) cascade octave training. // ========================================================================== // class CV_EXPORTS Octave : public cv::Algorithm { public: enum { // Direct backward pruning. (Cha Zhang and Paul Viola) DBP = 1, // Multiple instance pruning. (Cha Zhang and Paul Viola) MIP = 2, // Originally proposed by L. Bourdev and J. Brandt HEURISTIC = 4 }; virtual ~Octave(); static cv::Ptr create(cv::Rect boundingBox, int npositives, int nnegatives, int logScale, int shrinkage, cv::Ptr builder); virtual bool train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth) = 0; virtual void setRejectThresholds(OutputArray thresholds) = 0; virtual void write( cv::FileStorage &fs, const FeaturePool* pool, InputArray thresholds) const = 0; virtual void write( CvFileStorage* fs, String name) const = 0; }; CV_EXPORTS bool initModule_softcascade(void); // ======================== GPU version for soft cascade ===================== // class CV_EXPORTS ChannelsProcessor { public: enum { // GENERIC = 1 << 4, does not supported SEPARABLE = 2 << 4 }; // Appends specified number of HOG first-order features integrals into given vector. // Param frame is an input 3-channel bgr image. // Param channels is a GPU matrix of optionally shrinked channels // Param stream is stream is a high-level CUDA stream abstraction used for asynchronous execution. virtual void apply(InputArray frame, OutputArray channels, cv::gpu::Stream& stream = cv::gpu::Stream::Null()) = 0; // Creates a specific preprocessor implementation. // Param shrinkage is a resizing factor. Resize is applied before the computing integral sum // Param bins is a number of HOG-like channels. // Param flags is a channel computing extra flags. static cv::Ptr create(const int shrinkage, const int bins, const int flags = SEPARABLE); virtual ~ChannelsProcessor(); protected: ChannelsProcessor(); }; // Implementation of soft (stage-less) cascaded detector. class CV_EXPORTS SCascade : public cv::Algorithm { public: enum { NO_REJECT = 1, DOLLAR = 2, /*PASCAL = 4,*/ DEFAULT = NO_REJECT, NMS_MASK = 0xF}; // An empty cascade will be created. // Param minScale is a minimum scale relative to the original size of the image on which cascade will be applied. // Param minScale is a maximum scale relative to the original size of the image on which cascade will be applied. // Param scales is a number of scales from minScale to maxScale. // Param flags is an extra tuning flags. SCascade(const double minScale = 0.4, const double maxScale = 5., const int scales = 55, const int flags = NO_REJECT | ChannelsProcessor::SEPARABLE); virtual ~SCascade(); cv::AlgorithmInfo* info() const; // Load cascade from FileNode. // Param fn is a root node for cascade. Should be . virtual bool load(const FileNode& fn); // Load cascade config. virtual void read(const FileNode& fn); // Return the matrix of of detected objects. // Param image is a frame on which detector will be applied. // Param rois is a regions of interests mask generated by genRoi. // Only the objects that fall into one of the regions will be returned. // Param objects is an output array of Detections represented as GpuMat of detections (SCascade::Detection) // The first element of the matrix is actually a count of detections. // Param stream is stream is a high-level CUDA stream abstraction used for asynchronous execution virtual void detect(InputArray image, InputArray rois, OutputArray objects, cv::gpu::Stream& stream = cv::gpu::Stream::Null()) const; private: struct Fields; Fields* fields; double minScale; double maxScale; int scales; int flags; }; }} // namespace cv { namespace softcascade { #endif