/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other GpuMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or bpied warranties, including, but not limited to, the bpied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::gpu; using namespace std; #if !defined (HAVE_CUDA) cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, int) { throw_nogpu(); } cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, float, float, float, float, int) { throw_nogpu(); } void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); } void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } #else /* !defined (HAVE_CUDA) */ namespace cv { namespace gpu { namespace bp { void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump); void comp_data(int msg_type, const DevMem2D& l, const DevMem2D& r, int channels, DevMem2D mdata, const cudaStream_t& stream); void data_step_down(int dst_cols, int dst_rows, int src_rows, int msg_type, const DevMem2D& src, DevMem2D dst, const cudaStream_t& stream); void level_up_messages(int dst_idx, int dst_cols, int dst_rows, int src_rows, int msg_type, DevMem2D* mus, DevMem2D* mds, DevMem2D* mls, DevMem2D* mrs, const cudaStream_t& stream); void calc_all_iterations(int cols, int rows, int iters, int msg_type, DevMem2D& u, DevMem2D& d, DevMem2D& l, DevMem2D& r, const DevMem2D& data, const cudaStream_t& stream); void output(int msg_type, const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data, DevMem2D disp, const cudaStream_t& stream); }}} namespace { const float DEFAULT_MAX_DATA_TERM = 10.0f; const float DEFAULT_DATA_WEIGHT = 0.07f; const float DEFAULT_MAX_DISC_TERM = 1.7f; const float DEFAULT_DISC_SINGLE_JUMP = 1.0f; } cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, int msg_type_) : ndisp(ndisp_), iters(iters_), levels(levels_), max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT), max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP), msg_type(msg_type_), datas(levels_) { } cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_, int msg_type_) : ndisp(ndisp_), iters(iters_), levels(levels_), max_data_term(max_data_term_), data_weight(data_weight_), max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_), msg_type(msg_type_), datas(levels_) { } static void stereo_bp_gpu_operator(int& ndisp, int& iters, int& levels, float& max_data_term, float& data_weight, float& max_disc_term, float& disc_single_jump, int& msg_type, GpuMat& u, GpuMat& d, GpuMat& l, GpuMat& r, GpuMat& u2, GpuMat& d2, GpuMat& l2, GpuMat& r2, vector& datas, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp, const cudaStream_t& stream) { CV_DbgAssert(0 < ndisp && 0 < iters && 0 < levels && (msg_type == CV_32F || msg_type == CV_16S) && left.rows == right.rows && left.cols == right.cols && left.type() == right.type()); CV_Assert((left.type() == CV_8UC1 || left.type() == CV_8UC3)); const Scalar zero = Scalar::all(0); const float scale = ((msg_type == CV_32F) ? 1.0f : 10.0f); int rows = left.rows; int cols = left.cols; int divisor = (int)pow(2.f, levels - 1.0f); int lowest_cols = cols / divisor; int lowest_rows = rows / divisor; const int min_image_dim_size = 2; CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size); u.create(rows * ndisp, cols, msg_type); d.create(rows * ndisp, cols, msg_type); l.create(rows * ndisp, cols, msg_type); r.create(rows * ndisp, cols, msg_type); if (levels & 1) { //can clear less area u = zero; d = zero; l = zero; r = zero; } if (levels > 1) { int less_rows = (rows + 1) / 2; int less_cols = (cols + 1) / 2; u2.create(less_rows * ndisp, less_cols, msg_type); d2.create(less_rows * ndisp, less_cols, msg_type); l2.create(less_rows * ndisp, less_cols, msg_type); r2.create(less_rows * ndisp, less_cols, msg_type); if ((levels & 1) == 0) { u2 = zero; d2 = zero; l2 = zero; r2 = zero; } } bp::load_constants(ndisp, max_data_term, scale * data_weight, scale * max_disc_term, scale * disc_single_jump); datas.resize(levels); AutoBuffer buf(levels << 1); int* cols_all = buf; int* rows_all = cols_all + levels; cols_all[0] = cols; rows_all[0] = rows; datas[0].create(rows * ndisp, cols, msg_type); bp::comp_data(msg_type, left, right, left.channels(), datas.front(), stream); for (int i = 1; i < levels; i++) { cols_all[i] = (cols_all[i-1] + 1) / 2; rows_all[i] = (rows_all[i-1] + 1) / 2; datas[i].create(rows_all[i] * ndisp, cols_all[i], msg_type); bp::data_step_down(cols_all[i], rows_all[i], rows_all[i-1], msg_type, datas[i-1], datas[i], stream); } DevMem2D mus[] = {u, u2}; DevMem2D mds[] = {d, d2}; DevMem2D mrs[] = {r, r2}; DevMem2D mls[] = {l, l2}; int mem_idx = (levels & 1) ? 0 : 1; for (int i = levels - 1; i >= 0; i--) { // for lower level we have already computed messages by setting to zero if (i != levels - 1) bp::level_up_messages(mem_idx, cols_all[i], rows_all[i], rows_all[i+1], msg_type, mus, mds, mls, mrs, stream); bp::calc_all_iterations(cols_all[i], rows_all[i], iters, msg_type, mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas[i], stream); mem_idx = (mem_idx + 1) & 1; } if (disp.empty()) disp.create(rows, cols, CV_16S); out = ((disp.type() == CV_16S) ? disp : GpuMat(rows, cols, CV_16S)); out = zero; bp::output(msg_type, u, d, l, r, datas.front(), disp, stream); if (disp.type() != CV_16S) out.convertTo(disp, disp.type()); } void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp) { ::stereo_bp_gpu_operator(ndisp, iters, levels, max_data_term, data_weight, max_disc_term, disc_single_jump, msg_type, u, d, l, r, u2, d2, l2, r2, datas, out, left, right, disp, 0); } void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream) { ::stereo_bp_gpu_operator(ndisp, iters, levels, max_data_term, data_weight, max_disc_term, disc_single_jump, msg_type, u, d, l, r, u2, d2, l2, r2, datas, out, left, right, disp, StreamAccessor::getStream(stream)); } #endif /* !defined (HAVE_CUDA) */