// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "precomp.hpp" #include "opencl_kernels_core.hpp" #include "merge.simd.hpp" #include "merge.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content namespace cv { namespace hal { void merge8u(const uchar** src, uchar* dst, int len, int cn ) { CV_INSTRUMENT_REGION(); CALL_HAL(merge8u, cv_hal_merge8u, src, dst, len, cn) CV_CPU_DISPATCH(merge8u, (src, dst, len, cn), CV_CPU_DISPATCH_MODES_ALL); } void merge16u(const ushort** src, ushort* dst, int len, int cn ) { CV_INSTRUMENT_REGION(); CALL_HAL(merge16u, cv_hal_merge16u, src, dst, len, cn) CV_CPU_DISPATCH(merge16u, (src, dst, len, cn), CV_CPU_DISPATCH_MODES_ALL); } void merge32s(const int** src, int* dst, int len, int cn ) { CV_INSTRUMENT_REGION(); CALL_HAL(merge32s, cv_hal_merge32s, src, dst, len, cn) CV_CPU_DISPATCH(merge32s, (src, dst, len, cn), CV_CPU_DISPATCH_MODES_ALL); } void merge64s(const int64** src, int64* dst, int len, int cn ) { CV_INSTRUMENT_REGION(); CALL_HAL(merge64s, cv_hal_merge64s, src, dst, len, cn) CV_CPU_DISPATCH(merge64s, (src, dst, len, cn), CV_CPU_DISPATCH_MODES_ALL); } } // namespace cv::hal:: typedef void (*MergeFunc)(const uchar** src, uchar* dst, int len, int cn); static MergeFunc getMergeFunc(int depth) { static MergeFunc mergeTab[CV_DEPTH_MAX] = { (MergeFunc)GET_OPTIMIZED(cv::hal::merge8u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge8u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge32s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge32s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge64s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge8u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge64s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge64s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge32s), 0, 0, 0, }; return mergeTab[depth]; } #ifdef HAVE_IPP static bool ipp_merge(const Mat* mv, Mat& dst, int channels) { #ifdef HAVE_IPP_IW_LL CV_INSTRUMENT_REGION_IPP(); if(channels != 3 && channels != 4) return false; if(mv[0].dims <= 2) { IppiSize size = ippiSize(mv[0].size()); const void *srcPtrs[4] = {NULL}; size_t srcStep = mv[0].step; for(int i = 0; i < channels; i++) { srcPtrs[i] = mv[i].ptr(); if(srcStep != mv[i].step) return false; } return CV_INSTRUMENT_FUN_IPP(llwiCopyMerge, srcPtrs, (int)srcStep, dst.ptr(), (int)dst.step, size, (int)mv[0].elemSize1(), channels, 0) >= 0; } else { const Mat *arrays[5] = {NULL}; uchar *ptrs[5] = {NULL}; arrays[0] = &dst; for(int i = 1; i < channels; i++) { arrays[i] = &mv[i-1]; } NAryMatIterator it(arrays, ptrs); IppiSize size = { (int)it.size, 1 }; for( size_t i = 0; i < it.nplanes; i++, ++it ) { if(CV_INSTRUMENT_FUN_IPP(llwiCopyMerge, (const void**)&ptrs[1], 0, ptrs[0], 0, size, (int)mv[0].elemSize1(), channels, 0) < 0) return false; } return true; } #else CV_UNUSED(dst); CV_UNUSED(mv); CV_UNUSED(channels); return false; #endif } #endif void merge(const Mat* mv, size_t n, OutputArray _dst) { CV_INSTRUMENT_REGION(); CV_Assert( mv && n > 0 ); CV_Assert(!mv[0].empty()); int depth = mv[0].depth(); bool allch1 = true; int k, cn = 0; size_t i; for( i = 0; i < n; i++ ) { CV_Assert(mv[i].size == mv[0].size && mv[i].depth() == depth); allch1 = allch1 && mv[i].channels() == 1; cn += mv[i].channels(); } CV_Assert( 0 < cn && cn <= CV_CN_MAX ); _dst.create(mv[0].dims, mv[0].size, CV_MAKETYPE(depth, cn)); Mat dst = _dst.getMat(); if( n == 1 ) { mv[0].copyTo(dst); return; } CV_IPP_RUN(allch1, ipp_merge(mv, dst, (int)n)); if( !allch1 ) { AutoBuffer pairs(cn*2); int j, ni=0; for( i = 0, j = 0; i < n; i++, j += ni ) { ni = mv[i].channels(); for( k = 0; k < ni; k++ ) { pairs[(j+k)*2] = j + k; pairs[(j+k)*2+1] = j + k; } } mixChannels( mv, n, &dst, 1, &pairs[0], cn ); return; } MergeFunc func = getMergeFunc(depth); CV_Assert( func != 0 ); size_t esz = dst.elemSize(), esz1 = dst.elemSize1(); size_t blocksize0 = (int)((BLOCK_SIZE + esz-1)/esz); AutoBuffer _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16); const Mat** arrays = (const Mat**)_buf.data(); uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16); arrays[0] = &dst; for( k = 0; k < cn; k++ ) arrays[k+1] = &mv[k]; NAryMatIterator it(arrays, ptrs, cn+1); size_t total = (int)it.size; size_t blocksize = std::min((size_t)CV_SPLIT_MERGE_MAX_BLOCK_SIZE(cn), cn <= 4 ? total : std::min(total, blocksize0)); for( i = 0; i < it.nplanes; i++, ++it ) { for( size_t j = 0; j < total; j += blocksize ) { size_t bsz = std::min(total - j, blocksize); func( (const uchar**)&ptrs[1], ptrs[0], (int)bsz, cn ); if( j + blocksize < total ) { ptrs[0] += bsz*esz; for( int t = 0; t < cn; t++ ) ptrs[t+1] += bsz*esz1; } } } } #ifdef HAVE_OPENCL static bool ocl_merge( InputArrayOfArrays _mv, OutputArray _dst ) { std::vector src, ksrc; _mv.getUMatVector(src); CV_Assert(!src.empty()); int type = src[0].type(), depth = CV_MAT_DEPTH(type), rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; Size size = src[0].size(); for (size_t i = 0, srcsize = src.size(); i < srcsize; ++i) { int itype = src[i].type(), icn = CV_MAT_CN(itype), idepth = CV_MAT_DEPTH(itype), esz1 = CV_ELEM_SIZE1(idepth); if (src[i].dims > 2) return false; CV_Assert(size == src[i].size() && depth == idepth); for (int cn = 0; cn < icn; ++cn) { UMat tsrc = src[i]; tsrc.offset += cn * esz1; ksrc.push_back(tsrc); } } int dcn = (int)ksrc.size(); String srcargs, processelem, cndecl, indexdecl; for (int i = 0; i < dcn; ++i) { srcargs += format("DECLARE_SRC_PARAM(%d)", i); processelem += format("PROCESS_ELEM(%d)", i); indexdecl += format("DECLARE_INDEX(%d)", i); cndecl += format(" -D scn%d=%d", i, ksrc[i].channels()); } ocl::Kernel k("merge", ocl::core::split_merge_oclsrc, format("-D OP_MERGE -D cn=%d -D T=%s -D DECLARE_SRC_PARAMS_N=%s" " -D DECLARE_INDEX_N=%s -D PROCESS_ELEMS_N=%s%s", dcn, ocl::memopTypeToStr(depth), srcargs.c_str(), indexdecl.c_str(), processelem.c_str(), cndecl.c_str())); if (k.empty()) return false; _dst.create(size, CV_MAKE_TYPE(depth, dcn)); UMat dst = _dst.getUMat(); int argidx = 0; for (int i = 0; i < dcn; ++i) argidx = k.set(argidx, ocl::KernelArg::ReadOnlyNoSize(ksrc[i])); argidx = k.set(argidx, ocl::KernelArg::WriteOnly(dst)); k.set(argidx, rowsPerWI); size_t globalsize[2] = { (size_t)dst.cols, ((size_t)dst.rows + rowsPerWI - 1) / rowsPerWI }; return k.run(2, globalsize, NULL, false); } #endif void merge(InputArrayOfArrays _mv, OutputArray _dst) { CV_INSTRUMENT_REGION(); CV_OCL_RUN(_mv.isUMatVector() && _dst.isUMat(), ocl_merge(_mv, _dst)) std::vector mv; _mv.getMatVector(mv); merge(!mv.empty() ? &mv[0] : 0, mv.size(), _dst); } } // namespace