#!/usr/bin/env python import os import cv2 as cv import numpy as np from tests_common import NewOpenCVTests, unittest def normAssert(test, a, b, msg=None, lInf=1e-5): test.assertLess(np.max(np.abs(a - b)), lInf, msg) def inter_area(box1, box2): x_min, x_max = max(box1[0], box2[0]), min(box1[2], box2[2]) y_min, y_max = max(box1[1], box2[1]), min(box1[3], box2[3]) return (x_max - x_min) * (y_max - y_min) def area(box): return (box[2] - box[0]) * (box[3] - box[1]) def box2str(box): left, top = box[0], box[1] width, height = box[2] - left, box[3] - top return '[%f x %f from (%f, %f)]' % (width, height, left, top) def normAssertDetections(test, refClassIds, refScores, refBoxes, testClassIds, testScores, testBoxes, confThreshold=0.0, scores_diff=1e-5, boxes_iou_diff=1e-4): matchedRefBoxes = [False] * len(refBoxes) errMsg = '' for i in range(len(testBoxes)): testScore = testScores[i] if testScore < confThreshold: continue testClassId, testBox = testClassIds[i], testBoxes[i] matched = False for j in range(len(refBoxes)): if (not matchedRefBoxes[j]) and testClassId == refClassIds[j] and \ abs(testScore - refScores[j]) < scores_diff: interArea = inter_area(testBox, refBoxes[j]) iou = interArea / (area(testBox) + area(refBoxes[j]) - interArea) if abs(iou - 1.0) < boxes_iou_diff: matched = True matchedRefBoxes[j] = True if not matched: errMsg += '\nUnmatched prediction: class %d score %f box %s' % (testClassId, testScore, box2str(testBox)) for i in range(len(refBoxes)): if (not matchedRefBoxes[i]) and refScores[i] > confThreshold: errMsg += '\nUnmatched reference: class %d score %f box %s' % (refClassIds[i], refScores[i], box2str(refBoxes[i])) if errMsg: test.fail(errMsg) def printParams(backend, target): backendNames = { cv.dnn.DNN_BACKEND_OPENCV: 'OCV', cv.dnn.DNN_BACKEND_INFERENCE_ENGINE: 'DLIE' } targetNames = { cv.dnn.DNN_TARGET_CPU: 'CPU', cv.dnn.DNN_TARGET_OPENCL: 'OCL', cv.dnn.DNN_TARGET_OPENCL_FP16: 'OCL_FP16', cv.dnn.DNN_TARGET_MYRIAD: 'MYRIAD' } print('%s/%s' % (backendNames[backend], targetNames[target])) def getDefaultThreshold(target): if target == cv.dnn.DNN_TARGET_OPENCL_FP16 or target == cv.dnn.DNN_TARGET_MYRIAD: return 4e-3 else: return 1e-5 testdata_required = bool(os.environ.get('OPENCV_DNN_TEST_REQUIRE_TESTDATA', False)) g_dnnBackendsAndTargets = None class dnn_test(NewOpenCVTests): def setUp(self): super(dnn_test, self).setUp() global g_dnnBackendsAndTargets if g_dnnBackendsAndTargets is None: g_dnnBackendsAndTargets = self.initBackendsAndTargets() self.dnnBackendsAndTargets = g_dnnBackendsAndTargets def initBackendsAndTargets(self): self.dnnBackendsAndTargets = [ [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], ] if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU): self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU]) if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD): self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD]) if cv.ocl.haveOpenCL() and cv.ocl.useOpenCL(): self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL]) self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL_FP16]) if cv.ocl_Device.getDefault().isIntel(): if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL): self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL]) if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL_FP16): self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL_FP16]) return self.dnnBackendsAndTargets def find_dnn_file(self, filename, required=True): if not required: required = testdata_required return self.find_file(filename, [os.environ.get('OPENCV_DNN_TEST_DATA_PATH', os.getcwd()), os.environ['OPENCV_TEST_DATA_PATH']], required=required) def checkIETarget(self, backend, target): proto = self.find_dnn_file('dnn/layers/layer_convolution.prototxt') model = self.find_dnn_file('dnn/layers/layer_convolution.caffemodel') net = cv.dnn.readNet(proto, model, engine=cv.dnn.ENGINE_CLASSIC) try: net.setPreferableBackend(backend) net.setPreferableTarget(target) inp = np.random.standard_normal([1, 2, 10, 11]).astype(np.float32) net.setInput(inp) net.forward() except BaseException: return False return True def test_getAvailableTargets(self): targets = cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_OPENCV) self.assertTrue(cv.dnn.DNN_TARGET_CPU in targets) def test_blobRectsToImageRects(self): paramNet = cv.dnn.Image2BlobParams() paramNet.size = (226, 226) paramNet.ddepth = cv.CV_32F paramNet.mean = [0.485, 0.456, 0.406] paramNet.scalefactor = [0.229, 0.224, 0.225] paramNet.swapRB = False paramNet.datalayout = cv.DATA_LAYOUT_NCHW paramNet.paddingmode = cv.dnn.DNN_PMODE_LETTERBOX rBlob = np.zeros(shape=(20, 4), dtype=np.int32) rImg = paramNet.blobRectsToImageRects(rBlob, (356, 356)) self.assertTrue(type(rImg[0, 0])==np.int32) self.assertTrue(rImg.shape==(20, 4)) def test_blobRectToImageRect(self): paramNet = cv.dnn.Image2BlobParams() paramNet.size = (226, 226) paramNet.ddepth = cv.CV_32F paramNet.mean = [0.485, 0.456, 0.406] paramNet.scalefactor = [0.229, 0.224, 0.225] paramNet.swapRB = False paramNet.datalayout = cv.DATA_LAYOUT_NCHW paramNet.paddingmode = cv.dnn.DNN_PMODE_LETTERBOX rBlob = np.zeros(shape=(20, 4), dtype=np.int32) rImg = paramNet.blobRectToImageRect((0, 0, 0, 0), (356, 356)) self.assertTrue(type(rImg[0])==int) def test_blobFromImage(self): np.random.seed(324) width = 6 height = 7 scale = 1.0/127.5 mean = (10, 20, 30) # Test arguments names. img = np.random.randint(0, 255, [4, 5, 3]).astype(np.uint8) blob = cv.dnn.blobFromImage(img, scale, (width, height), mean, True, False) blob_args = cv.dnn.blobFromImage(img, scalefactor=scale, size=(width, height), mean=mean, swapRB=True, crop=False) normAssert(self, blob, blob_args) # Test values. target = cv.resize(img, (width, height), interpolation=cv.INTER_LINEAR) target = target.astype(np.float32) target = target[:,:,[2, 1, 0]] # BGR2RGB target[:,:,0] -= mean[0] target[:,:,1] -= mean[1] target[:,:,2] -= mean[2] target *= scale target = target.transpose(2, 0, 1).reshape(1, 3, height, width) # to NCHW normAssert(self, blob, target) def test_blobFromImageWithParams(self): np.random.seed(324) width = 6 height = 7 stddev = np.array([0.2, 0.3, 0.4]) scalefactor = 1.0/127.5 * stddev mean = (10, 20, 30) # Test arguments names. img = np.random.randint(0, 255, [4, 5, 3]).astype(np.uint8) param = cv.dnn.Image2BlobParams() param.scalefactor = scalefactor param.size = (6, 7) param.mean = mean param.swapRB=True param.datalayout = cv.DATA_LAYOUT_NHWC blob = cv.dnn.blobFromImageWithParams(img, param) blob_args = cv.dnn.blobFromImageWithParams(img, cv.dnn.Image2BlobParams(scalefactor=scalefactor, size=(6, 7), mean=mean, swapRB=True, datalayout=cv.DATA_LAYOUT_NHWC)) normAssert(self, blob, blob_args) target2 = cv.resize(img, (width, height), interpolation=cv.INTER_LINEAR).astype(np.float32) target2 = target2[:,:,[2, 1, 0]] # BGR2RGB target2[:,:,0] -= mean[0] target2[:,:,1] -= mean[1] target2[:,:,2] -= mean[2] target2[:,:,0] *= scalefactor[0] target2[:,:,1] *= scalefactor[1] target2[:,:,2] *= scalefactor[2] target2 = target2.reshape(1, height, width, 3) # to NHWC normAssert(self, blob, target2) def test_model(self): img_path = self.find_dnn_file("dnn/street.png") weights = self.find_dnn_file("dnn/MobileNetSSD_deploy_19e3ec3.caffemodel", required=False) config = self.find_dnn_file("dnn/MobileNetSSD_deploy_19e3ec3.prototxt", required=False) if weights is None or config is None: raise unittest.SkipTest("Missing DNN test files (dnn/MobileNetSSD_deploy_19e3ec3.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.") frame = cv.imread(img_path) model = cv.dnn_DetectionModel(weights, config) model.setInputParams(size=(300, 300), mean=(127.5, 127.5, 127.5), scale=1.0/127.5) iouDiff = 0.05 confThreshold = 0.0001 nmsThreshold = 0 scoreDiff = 1e-3 classIds, confidences, boxes = model.detect(frame, confThreshold, nmsThreshold) refClassIds = (7, 15) refConfidences = (0.9998, 0.8793) refBoxes = ((328, 238, 85, 102), (101, 188, 34, 138)) normAssertDetections(self, refClassIds, refConfidences, refBoxes, classIds, confidences, boxes,confThreshold, scoreDiff, iouDiff) for box in boxes: cv.rectangle(frame, box, (0, 255, 0)) cv.rectangle(frame, np.array(box), (0, 255, 0)) cv.rectangle(frame, tuple(box), (0, 255, 0)) cv.rectangle(frame, list(box), (0, 255, 0)) def test_classification_model(self): img_path = self.find_dnn_file("dnn/googlenet_0.png") weights = self.find_dnn_file("dnn/squeezenet_v1.1.caffemodel", required=False) config = self.find_dnn_file("dnn/squeezenet_v1.1.prototxt") ref = np.load(self.find_dnn_file("dnn/squeezenet_v1.1_prob.npy")) if weights is None or config is None: raise unittest.SkipTest("Missing DNN test files (dnn/squeezenet_v1.1.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.") frame = cv.imread(img_path) model = cv.dnn_ClassificationModel(config, weights) model.setInputSize(227, 227) model.setInputCrop(True) out = model.predict(frame) normAssert(self, out, ref) def test_textdetection_model(self): img_path = self.find_dnn_file("dnn/text_det_test1.png") weights = self.find_dnn_file("dnn/onnx/models/DB_TD500_resnet50.onnx", required=False) if weights is None: raise unittest.SkipTest("Missing DNN test files (onnx/models/DB_TD500_resnet50.onnx). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.") frame = cv.imread(img_path) scale = 1.0 / 255.0 size = (736, 736) mean = (122.67891434, 116.66876762, 104.00698793) model = cv.dnn_TextDetectionModel_DB(weights) model.setInputParams(scale, size, mean) out, _ = model.detect(frame) self.assertTrue(type(out) == tuple, msg='actual type {}'.format(str(type(out)))) self.assertTrue(np.array(out).shape == (2, 4, 2)) def test_face_detection(self): model = self.find_dnn_file('dnn/onnx/models/yunet-202303.onnx', required=False) img = self.get_sample('gpu/lbpcascade/er.png') ref = [[1, 339.62445, 35.32416, 30.754604, 40.202126, 0.9302596], [1, 140.63962, 255.55545, 32.832615, 41.767395, 0.916015], [1, 68.39314, 126.74046, 30.29324, 39.14823, 0.90639645], [1, 119.57139, 48.482178, 30.600697, 40.485996, 0.906021], [1, 259.0921, 229.30713, 31.088186, 39.74022, 0.90490955], [1, 405.69778, 87.28158, 33.393406, 42.96226, 0.8996978]] print('\n') for backend, target in self.dnnBackendsAndTargets: printParams(backend, target) net = cv.FaceDetectorYN.create( model=model, config="", input_size=img.shape[:2], score_threshold=0.3, nms_threshold=0.45, top_k=5000, backend_id=backend, target_id=target ) out = net.detect(img) out = out[1] out = out.reshape(-1, 15) ref = np.array(ref, np.float32) refClassIds, testClassIds = ref[:, 0], np.ones(out.shape[0], np.float32) refScores, testScores = ref[:, -1], out[:, -1] refBoxes, testBoxes = ref[:, 1:5], out[:, 0:4] normAssertDetections(self, refClassIds, refScores, refBoxes, testClassIds, testScores, testBoxes, 0.5) def test_async(self): # bug: https://github.com/opencv/opencv/issues/26376 raise unittest.SkipTest("The new dnn engine does not support async inference") timeout = 10*1000*10**6 # in nanoseconds (10 sec) proto = self.find_dnn_file('dnn/layers/layer_convolution.prototxt') model = self.find_dnn_file('dnn/layers/layer_convolution.caffemodel') if proto is None or model is None: raise unittest.SkipTest("Missing DNN test files (dnn/layers/layer_convolution.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.") print('\n') for backend, target in self.dnnBackendsAndTargets: if backend != cv.dnn.DNN_BACKEND_INFERENCE_ENGINE: continue printParams(backend, target) netSync = cv.dnn.readNet(proto, model, engine=cv.dnn.ENGINE_CLASSIC) netSync.setPreferableBackend(backend) netSync.setPreferableTarget(target) netAsync = cv.dnn.readNet(proto, model) netAsync.setPreferableBackend(backend) netAsync.setPreferableTarget(target) # Generate inputs numInputs = 10 inputs = [] for _ in range(numInputs): inputs.append(np.random.standard_normal([2, 6, 75, 113]).astype(np.float32)) # Run synchronously refs = [] for i in range(numInputs): netSync.setInput(inputs[i]) refs.append(netSync.forward()) # Run asynchronously. To make test more robust, process inputs in the reversed order. outs = [] for i in reversed(range(numInputs)): netAsync.setInput(inputs[i]) outs.insert(0, netAsync.forwardAsync()) for i in reversed(range(numInputs)): ret, result = outs[i].get(timeoutNs=float(timeout)) self.assertTrue(ret) normAssert(self, refs[i], result, 'Index: %d' % i, 1e-10) def test_nms(self): confs = (1, 1) rects = ((0, 0, 0.4, 0.4), (0, 0, 0.2, 0.4)) # 0.5 overlap self.assertTrue(all(cv.dnn.NMSBoxes(rects, confs, 0, 0.6).ravel() == (0, 1))) # BUG: https://github.com/opencv/opencv/issues/26200 @unittest.skip("custom layers are partially broken with transition to the new dnn engine") def test_custom_layer(self): class CropLayer(object): def __init__(self, params, blobs): self.xstart = 0 self.xend = 0 self.ystart = 0 self.yend = 0 # Our layer receives two inputs. We need to crop the first input blob # to match a shape of the second one (keeping batch size and number of channels) def getMemoryShapes(self, inputs): inputShape, targetShape = inputs[0], inputs[1] batchSize, numChannels = inputShape[0], inputShape[1] height, width = targetShape[2], targetShape[3] self.ystart = (inputShape[2] - targetShape[2]) // 2 self.xstart = (inputShape[3] - targetShape[3]) // 2 self.yend = self.ystart + height self.xend = self.xstart + width return [[batchSize, numChannels, height, width]] def forward(self, inputs): return [inputs[0][:,:,self.ystart:self.yend,self.xstart:self.xend]] cv.dnn_registerLayer('CropCaffe', CropLayer) proto = ''' name: "TestCrop" input: "input" input_shape { dim: 1 dim: 2 dim: 5 dim: 5 } input: "roi" input_shape { dim: 1 dim: 2 dim: 3 dim: 3 } layer { name: "Crop" type: "CropCaffe" bottom: "input" bottom: "roi" top: "Crop" }''' net = cv.dnn.readNetFromCaffe(bytearray(proto.encode())) for backend, target in self.dnnBackendsAndTargets: if backend != cv.dnn.DNN_BACKEND_OPENCV: continue printParams(backend, target) net.setPreferableBackend(backend) net.setPreferableTarget(target) src_shape = [1, 2, 5, 5] dst_shape = [1, 2, 3, 3] inp = np.arange(0, np.prod(src_shape), dtype=np.float32).reshape(src_shape) roi = np.empty(dst_shape, dtype=np.float32) net.setInput(inp, "input") net.setInput(roi, "roi") out = net.forward() ref = inp[:, :, 1:4, 1:4] normAssert(self, out, ref) cv.dnn_unregisterLayer('CropCaffe') # check that dnn module can work with 3D tensor as input for network def test_input_3d(self): model = self.find_dnn_file('dnn/onnx/models/hidden_lstm.onnx') input_file = self.find_dnn_file('dnn/onnx/data/input_hidden_lstm.npy') output_file = self.find_dnn_file('dnn/onnx/data/output_hidden_lstm.npy') if model is None: raise unittest.SkipTest("Missing DNN test files (dnn/onnx/models/hidden_lstm.onnx). " "Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.") if input_file is None or output_file is None: raise unittest.SkipTest("Missing DNN test files (dnn/onnx/data/{input/output}_hidden_lstm.npy). " "Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.") input = np.load(input_file) gold_output = np.load(output_file) for backend, target in self.dnnBackendsAndTargets: printParams(backend, target) net = cv.dnn.readNet(model, engine=cv.dnn.ENGINE_CLASSIC) net.setPreferableBackend(backend) net.setPreferableTarget(target) # Check whether 3d shape is parsed correctly for setInput net.setInput(input) # Case 0: test API `forward(const String& outputName = String()` real_output = net.forward() # Retval is a np.array of shape [2, 5, 3] normAssert(self, real_output, gold_output, "Case 1", getDefaultThreshold(target)) ''' Pre-allocate output memory with correct shape. Normally Python users do not use in this way, but we have to test it since we design API in this way ''' # Case 1: a np.array with a string of output name. # It tests API `forward(OutputArrayOfArrays outputBlobs, const String& outputName = String()` # when outputBlobs is a np.array and we expect it to be the only output. real_output = np.empty([2, 5, 3], dtype=np.float32) real_output = net.forward(real_output, "237") # Retval is a tuple with a np.array of shape [2, 5, 3] normAssert(self, real_output, gold_output, "Case 1", getDefaultThreshold(target)) # Case 2: a tuple of np.array with a string of output name. # It tests API `forward(OutputArrayOfArrays outputBlobs, const String& outputName = String()` # when outputBlobs is a container of several np.array and we expect to save all outputs accordingly. real_output = tuple(np.empty([2, 5, 3], dtype=np.float32)) real_output = net.forward(real_output, "237") # Retval is a tuple with a np.array of shape [2, 5, 3] normAssert(self, real_output, gold_output, "Case 2", getDefaultThreshold(target)) # Case 3: a tuple of np.array with a string of output name. # It tests API `forward(OutputArrayOfArrays outputBlobs, const std::vector& outBlobNames)` real_output = tuple(np.empty([2, 5, 3], dtype=np.float32)) # Note that it does not support parsing a list , e.g. ["237"] real_output = net.forward(real_output, ("237")) # Retval is a tuple with a np.array of shape [2, 5, 3] normAssert(self, real_output, gold_output, "Case 3", getDefaultThreshold(target)) def test_set_param_3d(self): model_path = self.find_dnn_file('dnn/onnx/models/matmul_3d_init.onnx') input_file = self.find_dnn_file('dnn/onnx/data/input_matmul_3d_init.npy') output_file = self.find_dnn_file('dnn/onnx/data/output_matmul_3d_init.npy') input = np.load(input_file) output = np.load(output_file) for backend, target in self.dnnBackendsAndTargets: printParams(backend, target) net = cv.dnn.readNet(model_path, "", "", engine=cv.dnn.ENGINE_CLASSIC) node_name = net.getLayerNames()[0] w = net.getParam(node_name, 0) # returns the original tensor of three-dimensional shape net.setParam(node_name, 0, w) # set param once again to see whether tensor is converted with correct shape net.setPreferableBackend(backend) net.setPreferableTarget(target) net.setInput(input) res_output = net.forward() normAssert(self, output, res_output, "", getDefaultThreshold(target)) def test_scalefactor_assign(self): params = cv.dnn.Image2BlobParams() self.assertEqual(params.scalefactor, (1.0, 1.0, 1.0, 1.0)) params.scalefactor = 2.0 self.assertEqual(params.scalefactor, (2.0, 0.0, 0.0, 0.0)) def test_net_builder(self): net = cv.dnn.Net() params = { "kernel_w": 3, "kernel_h": 3, "stride_w": 3, "stride_h": 3, "pool": "max", } net.addLayerToPrev("pool", "Pooling", cv.CV_32F, params) inp = np.random.standard_normal([1, 2, 9, 12]).astype(np.float32) net.setInput(inp) out = net.forward() self.assertEqual(out.shape, (1, 2, 3, 4)) def test_bool_operator(self): n = self.find_dnn_file('dnn/onnx/models/and_op.onnx') x = np.random.randint(0, 2, [5], dtype=np.bool_) y = np.random.randint(0, 2, [5], dtype=np.bool_) o = x & y net = cv.dnn.readNet(n) names = ["x", "y"] net.setInputsNames(names) net.setInput(x, names[0]) net.setInput(y, names[1]) out = net.forward() self.assertTrue(np.all(out == o)) if __name__ == '__main__': NewOpenCVTests.bootstrap()