#include // Console I/O #include // String to number conversion #include // Basic OpenCV structures #include // Image processing methods for the CPU #include // Read images #include // GPU structures and methods using namespace std; using namespace cv; double getPSNR(const Mat& I1, const Mat& I2); // CPU versions Scalar getMSSIM( const Mat& I1, const Mat& I2); double getPSNR_GPU(const Mat& I1, const Mat& I2); // Basic GPU versions Scalar getMSSIM_GPU( const Mat& I1, const Mat& I2); struct BufferPSNR // Optimized GPU versions { // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later. gpu::GpuMat gI1, gI2, gs, t1,t2; gpu::GpuMat buf; }; double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b); struct BufferMSSIM // Optimized GPU versions { // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later. gpu::GpuMat gI1, gI2, gs, t1,t2; gpu::GpuMat I1_2, I2_2, I1_I2; vector vI1, vI2; gpu::GpuMat mu1, mu2; gpu::GpuMat mu1_2, mu2_2, mu1_mu2; gpu::GpuMat sigma1_2, sigma2_2, sigma12; gpu::GpuMat t3; gpu::GpuMat ssim_map; gpu::GpuMat buf; }; Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b); void help() { cout << "\n--------------------------------------------------------------------------" << endl << "This program shows how to port your CPU code to GPU or write that from scratch." << endl << "You can see the performance improvement for the similarity check methods (PSNR and SSIM)." << endl << "Usage:" << endl << "./gpu-basics-similarity referenceImage comparedImage numberOfTimesToRunTest(like 10)." << endl << "--------------------------------------------------------------------------" << endl << endl; } int main(int argc, char *argv[]) { help(); Mat I1 = imread(argv[1]); // Read the two images Mat I2 = imread(argv[2]); if (!I1.data || !I2.data) // Check for success { cout << "Couldn't read the image"; return 0; } BufferPSNR bufferPSNR; BufferMSSIM bufferMSSIM; int TIMES; stringstream sstr(argv[3]); sstr >> TIMES; double time, result; //------------------------------- PSNR CPU ---------------------------------------------------- time = (double)getTickCount(); for (int i = 0; i < TIMES; ++i) result = getPSNR(I1,I2); time = 1000*((double)getTickCount() - time)/getTickFrequency(); time /= TIMES; cout << "Time of PSNR CPU (averaged for " << TIMES << " runs): " << time << " milliseconds." << " With result of: " << result << endl; //------------------------------- PSNR GPU ---------------------------------------------------- time = (double)getTickCount(); for (int i = 0; i < TIMES; ++i) result = getPSNR_GPU(I1,I2); time = 1000*((double)getTickCount() - time)/getTickFrequency(); time /= TIMES; cout << "Time of PSNR GPU (averaged for " << TIMES << " runs): " << time << " milliseconds." << " With result of: " << result << endl; //------------------------------- PSNR GPU Optimized-------------------------------------------- time = (double)getTickCount(); // Initial call result = getPSNR_GPU_optimized(I1, I2, bufferPSNR); time = 1000*((double)getTickCount() - time)/getTickFrequency(); cout << "Initial call GPU optimized: " << time <<" milliseconds." << " With result of: " << result << endl; time = (double)getTickCount(); for (int i = 0; i < TIMES; ++i) result = getPSNR_GPU_optimized(I1, I2, bufferPSNR); time = 1000*((double)getTickCount() - time)/getTickFrequency(); time /= TIMES; cout << "Time of PSNR GPU OPTIMIZED ( / " << TIMES << " runs): " << time << " milliseconds." << " With result of: " << result << endl << endl; //------------------------------- SSIM CPU ----------------------------------------------------- Scalar x; time = (double)getTickCount(); for (int i = 0; i < TIMES; ++i) x = getMSSIM(I1,I2); time = 1000*((double)getTickCount() - time)/getTickFrequency(); time /= TIMES; cout << "Time of MSSIM CPU (averaged for " << TIMES << " runs): " << time << " milliseconds." << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl; //------------------------------- SSIM GPU ----------------------------------------------------- time = (double)getTickCount(); for (int i = 0; i < TIMES; ++i) x = getMSSIM_GPU(I1,I2); time = 1000*((double)getTickCount() - time)/getTickFrequency(); time /= TIMES; cout << "Time of MSSIM GPU (averaged for " << TIMES << " runs): " << time << " milliseconds." << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl; //------------------------------- SSIM GPU Optimized-------------------------------------------- time = (double)getTickCount(); x = getMSSIM_GPU_optimized(I1,I2, bufferMSSIM); time = 1000*((double)getTickCount() - time)/getTickFrequency(); cout << "Time of MSSIM GPU Initial Call " << time << " milliseconds." << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl; time = (double)getTickCount(); for (int i = 0; i < TIMES; ++i) x = getMSSIM_GPU_optimized(I1,I2, bufferMSSIM); time = 1000*((double)getTickCount() - time)/getTickFrequency(); time /= TIMES; cout << "Time of MSSIM GPU OPTIMIZED ( / " << TIMES << " runs): " << time << " milliseconds." << " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl << endl; return 0; } double getPSNR(const Mat& I1, const Mat& I2) { Mat s1; absdiff(I1, I2, s1); // |I1 - I2| s1.convertTo(s1, CV_32F); // cannot make a square on 8 bits s1 = s1.mul(s1); // |I1 - I2|^2 Scalar s = sum(s1); // sum elements per channel double sse = s.val[0] + s.val[1] + s.val[2]; // sum channels if( sse <= 1e-10) // for small values return zero return 0; else { double mse =sse /(double)(I1.channels() * I1.total()); double psnr = 10.0*log10((255*255)/mse); return psnr; } } double getPSNR_GPU(const Mat& I1, const Mat& I2) { gpu::GpuMat gI1, gI2, gs, t1,t2; gI1.upload(I1); gI2.upload(I2); gI1.convertTo(t1, CV_32F); gI2.convertTo(t2, CV_32F); gpu::absdiff(t1.reshape(1), t2.reshape(1), gs); gpu::multiply(gs, gs, gs); Scalar s = gpu::sum(gs); double sse = s.val[0] + s.val[1] + s.val[2]; if( sse <= 1e-10) // for small values return zero return 0; else { double mse =sse /(double)(gI1.channels() * I1.total()); double psnr = 10.0*log10((255*255)/mse); return psnr; } } double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b) { b.gI1.upload(I1); b.gI2.upload(I2); b.gI1.convertTo(b.t1, CV_32F); b.gI2.convertTo(b.t2, CV_32F); gpu::absdiff(b.t1.reshape(1), b.t2.reshape(1), b.gs); gpu::multiply(b.gs, b.gs, b.gs); double sse = gpu::sum(b.gs, b.buf)[0]; if( sse <= 1e-10) // for small values return zero return 0; else { double mse = sse /(double)(I1.channels() * I1.total()); double psnr = 10.0*log10((255*255)/mse); return psnr; } } Scalar getMSSIM( const Mat& i1, const Mat& i2) { const double C1 = 6.5025, C2 = 58.5225; int d = CV_32F; Mat I1, I2; i1.convertTo(I1, d); // cannot calculate on one byte large values i2.convertTo(I2, d); Mat I2_2 = I2.mul(I2); // I2^2 Mat I1_2 = I1.mul(I1); // I1^2 Mat I1_I2 = I1.mul(I2); // I1 * I2 Mat mu1, mu2; GaussianBlur(I1, mu1, Size(11, 11), 1.5); GaussianBlur(I2, mu2, Size(11, 11), 1.5); Mat mu1_2 = mu1.mul(mu1); Mat mu2_2 = mu2.mul(mu2); Mat mu1_mu2 = mu1.mul(mu2); Mat sigma1_2, sigma2_2, sigma12; GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5); sigma1_2 -= mu1_2; GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5); sigma2_2 -= mu2_2; GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5); sigma12 -= mu1_mu2; ///////////////////////////////// FORMULA //////////////////////////////// Mat t1, t2, t3; t1 = 2 * mu1_mu2 + C1; t2 = 2 * sigma12 + C2; t3 = t1.mul(t2); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2)) t1 = mu1_2 + mu2_2 + C1; t2 = sigma1_2 + sigma2_2 + C2; t1 = t1.mul(t2); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2)) Mat ssim_map; divide(t3, t1, ssim_map); // ssim_map = t3./t1; Scalar mssim = mean( ssim_map ); // mssim = average of ssim map return mssim; } Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b) { int cn = i1.channels(); const float C1 = 6.5025f, C2 = 58.5225f; b.gI1.upload(i1); b.gI2.upload(i2); gpu::Stream stream; stream.enqueueConvert(b.gI1, b.t1, CV_32F); stream.enqueueConvert(b.gI2, b.t2, CV_32F); gpu::split(b.t1, b.vI1, stream); gpu::split(b.t2, b.vI2, stream); Scalar mssim; for( int i = 0; i < b.gI1.channels(); ++i ) { gpu::multiply(b.vI2[i], b.vI2[i], b.I2_2, stream); // I2^2 gpu::multiply(b.vI1[i], b.vI1[i], b.I1_2, stream); // I1^2 gpu::multiply(b.vI1[i], b.vI2[i], b.I1_I2, stream); // I1 * I2 gpu::GaussianBlur(b.vI1[i], b.mu1, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream); gpu::GaussianBlur(b.vI2[i], b.mu2, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream); gpu::multiply(b.mu1, b.mu1, b.mu1_2, stream); gpu::multiply(b.mu2, b.mu2, b.mu2_2, stream); gpu::multiply(b.mu1, b.mu2, b.mu1_mu2, stream); gpu::GaussianBlur(b.I1_2, b.sigma1_2, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream); gpu::subtract(b.sigma1_2, b.mu1_2, b.sigma1_2, stream); //b.sigma1_2 -= b.mu1_2; - This would result in an extra data transfer operation gpu::GaussianBlur(b.I2_2, b.sigma2_2, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream); gpu::subtract(b.sigma2_2, b.mu2_2, b.sigma2_2, stream); //b.sigma2_2 -= b.mu2_2; gpu::GaussianBlur(b.I1_I2, b.sigma12, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream); gpu::subtract(b.sigma12, b.mu1_mu2, b.sigma12, stream); //b.sigma12 -= b.mu1_mu2; //here too it would be an extra data transfer due to call of operator*(Scalar, Mat) gpu::multiply(b.mu1_mu2, 2, b.t1, stream); //b.t1 = 2 * b.mu1_mu2 + C1; gpu::add(b.t1, C1, b.t1, stream); gpu::multiply(b.sigma12, 2, b.t2, stream); //b.t2 = 2 * b.sigma12 + C2; gpu::add(b.t2, C2, b.t2, stream); gpu::multiply(b.t1, b.t2, b.t3, stream); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2)) gpu::add(b.mu1_2, b.mu2_2, b.t1, stream); gpu::add(b.t1, C1, b.t1, stream); gpu::add(b.sigma1_2, b.sigma2_2, b.t2, stream); gpu::add(b.t2, C2, b.t2, stream); gpu::multiply(b.t1, b.t2, b.t1, stream); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2)) gpu::divide(b.t3, b.t1, b.ssim_map, stream); // ssim_map = t3./t1; stream.waitForCompletion(); Scalar s = gpu::sum(b.ssim_map, b.buf); mssim.val[i] = s.val[0] / (b.ssim_map.rows * b.ssim_map.cols); } return mssim; }