/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "autocalib.hpp" #include "util.hpp" using namespace std; using namespace cv; void focalsFromHomography(const Mat& H, double &f0, double &f1, bool &f0_ok, bool &f1_ok) { CV_Assert(H.type() == CV_64F && H.size() == Size(3, 3)); const double* h = reinterpret_cast<const double*>(H.data); double d1, d2; // Denominators double v1, v2; // Focal squares value candidates f1_ok = true; d1 = h[6] * h[7]; d2 = (h[7] - h[6]) * (h[7] + h[6]); v1 = -(h[0] * h[1] + h[3] * h[4]) / d1; v2 = (h[0] * h[0] + h[3] * h[3] - h[1] * h[1] - h[4] * h[4]) / d2; if (v1 < v2) swap(v1, v2); if (v1 > 0 && v2 > 0) f1 = sqrt(abs(d1) > abs(d2) ? v1 : v2); else if (v1 > 0) f1 = sqrt(v1); else f1_ok = false; f0_ok = true; d1 = h[0] * h[3] + h[1] * h[4]; d2 = h[0] * h[0] + h[1] * h[1] - h[3] * h[3] - h[4] * h[4]; v1 = -h[2] * h[5] / d1; v2 = (h[5] * h[5] - h[2] * h[2]) / d2; if (v1 < v2) swap(v1, v2); if (v1 > 0 && v2 > 0) f0 = sqrt(abs(d1) > abs(d2) ? v1 : v2); else if (v1 > 0) f0 = sqrt(v1); else f0_ok = false; } void estimateFocal(const vector<ImageFeatures> &features, const vector<MatchesInfo> &pairwise_matches, vector<double> &focals) { const int num_images = static_cast<int>(features.size()); focals.resize(num_images); vector<double> all_focals; for (int i = 0; i < num_images; ++i) { for (int j = 0; j < num_images; ++j) { const MatchesInfo &m = pairwise_matches[i*num_images + j]; if (m.H.empty()) continue; double f0, f1; bool f0ok, f1ok; focalsFromHomography(m.H, f0, f1, f0ok, f1ok); if (f0ok && f1ok) all_focals.push_back(sqrt(f0 * f1)); } } if (static_cast<int>(all_focals.size()) >= num_images - 1) { nth_element(all_focals.begin(), all_focals.begin() + all_focals.size()/2, all_focals.end()); for (int i = 0; i < num_images; ++i) focals[i] = all_focals[all_focals.size()/2]; } else { LOGLN("Can't estimate focal length, will use naive approach"); double focals_sum = 0; for (int i = 0; i < num_images; ++i) focals_sum += features[i].img_size.width + features[i].img_size.height; for (int i = 0; i < num_images; ++i) focals[i] = focals_sum / num_images; } } namespace { template<typename _Tp> static inline bool decomposeCholesky(_Tp* A, size_t astep, int m) { if (!Cholesky(A, astep, m, 0, 0, 0)) return false; astep /= sizeof(A[0]); for (int i = 0; i < m; ++i) A[i*astep + i] = (_Tp)(1./A[i*astep + i]); return true; } } // namespace bool calibrateRotatingCamera(const vector<Mat> &Hs, Mat &K) { int m = static_cast<int>(Hs.size()); CV_Assert(m >= 1); vector<Mat> Hs_(m); for (int i = 0; i < m; ++i) { CV_Assert(Hs[i].size() == Size(3, 3) && Hs[i].type() == CV_64F); Hs_[i] = Hs[i] / pow(determinant(Hs[i]), 1./3.); } const int idx_map[3][3] = {{0, 1, 2}, {1, 3, 4}, {2, 4, 5}}; Mat_<double> A(6*m, 6); A.setTo(0); int eq_idx = 0; for (int k = 0; k < m; ++k) { Mat_<double> H(Hs_[k]); for (int i = 0; i < 3; ++i) { for (int j = i; j < 3; ++j, ++eq_idx) { for (int l = 0; l < 3; ++l) { for (int s = 0; s < 3; ++s) { int idx = idx_map[l][s]; A(eq_idx, idx) += H(i,l) * H(j,s); } } A(eq_idx, idx_map[i][j]) -= 1; } } } Mat_<double> wcoef; SVD::solveZ(A, wcoef); Mat_<double> W(3,3); for (int i = 0; i < 3; ++i) for (int j = i; j < 3; ++j) W(i,j) = W(j,i) = wcoef(idx_map[i][j], 0) / wcoef(5,0); if (!decomposeCholesky(W.ptr<double>(), W.step, 3)) return false; W(0,1) = W(0,2) = W(1,2) = 0; K = W.t(); return true; }