/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the OpenCV Foundation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #undef ALEX_DEBUG #include "debug.hpp" #include #include #define ABSCLIP(val,threshold) MIN(MAX((val),-(threshold)),(threshold)) namespace cv{namespace optim{ class AddFloatToCharScaled{ public: AddFloatToCharScaled(double scale):_scale(scale){} inline double operator()(double a,uchar b){ return a+_scale*((double)b); } private: double _scale; }; #ifndef OPENCV_NOSTL using std::transform; #else template static OutputIterator transform (InputIterator first1, InputIterator last1, InputIterator2 first2, OutputIterator result, BinaryOperator binary_op) { while (first1 != last1) { *result = binary_op(*first1, *first2); ++result; ++first1; ++first2; } return result; } #endif void denoise_TVL1(const std::vector& observations,Mat& result, double lambda, int niters){ CV_Assert(observations.size()>0 && niters>0 && lambda>0); const double L2 = 8.0, tau = 0.02, sigma = 1./(L2*tau), theta = 1.0; double clambda = (double)lambda; double s=0; const int workdepth = CV_64F; int i, x, y, rows=observations[0].rows, cols=observations[0].cols,count; for(i=1;i<(int)observations.size();i++){ CV_Assert(observations[i].rows==rows && observations[i].cols==cols); } Mat X, P = Mat::zeros(rows, cols, CV_MAKETYPE(workdepth, 2)); observations[0].convertTo(X, workdepth, 1./255); std::vector< Mat_ > Rs(observations.size()); for(count=0;count<(int)Rs.size();count++){ Rs[count]=Mat::zeros(rows,cols,workdepth); } for( i = 0; i < niters; i++ ) { double currsigma = i == 0 ? 1 + sigma : sigma; // P_ = P + sigma*nabla(X) // P(x,y) = P_(x,y)/max(||P(x,y)||,1) for( y = 0; y < rows; y++ ) { const double* x_curr = X.ptr(y); const double* x_next = X.ptr(std::min(y+1, rows-1)); Point2d* p_curr = P.ptr(y); double dx, dy, m; for( x = 0; x < cols-1; x++ ) { dx = (x_curr[x+1] - x_curr[x])*currsigma + p_curr[x].x; dy = (x_next[x] - x_curr[x])*currsigma + p_curr[x].y; m = 1.0/std::max(std::sqrt(dx*dx + dy*dy), 1.0); p_curr[x].x = dx*m; p_curr[x].y = dy*m; } dy = (x_next[x] - x_curr[x])*currsigma + p_curr[x].y; m = 1.0/std::max(std::abs(dy), 1.0); p_curr[x].x = 0.0; p_curr[x].y = dy*m; } //Rs = clip(Rs + sigma*(X-imgs), -clambda, clambda) for(count=0;count<(int)Rs.size();count++){ transform,MatConstIterator_,MatIterator_,AddFloatToCharScaled>( Rs[count].begin(),Rs[count].end(),observations[count].begin(), Rs[count].begin(),AddFloatToCharScaled(-sigma/255.0)); Rs[count]+=sigma*X; min(Rs[count],clambda,Rs[count]); max(Rs[count],-clambda,Rs[count]); } for( y = 0; y < rows; y++ ) { double* x_curr = X.ptr(y); const Point2d* p_curr = P.ptr(y); const Point2d* p_prev = P.ptr(std::max(y - 1, 0)); // X1 = X + tau*(-nablaT(P)) x = 0; s=0.0; for(count=0;count<(int)Rs.size();count++){ s=s+Rs[count](y,x); } double x_new = x_curr[x] + tau*(p_curr[x].y - p_prev[x].y)-tau*s; // X = X2 + theta*(X2 - X) x_curr[x] = x_new + theta*(x_new - x_curr[x]); for(x = 1; x < cols; x++ ) { s=0.0; for(count=0;count<(int)Rs.size();count++){ s+=Rs[count](y,x); } // X1 = X + tau*(-nablaT(P)) x_new = x_curr[x] + tau*(p_curr[x].x - p_curr[x-1].x + p_curr[x].y - p_prev[x].y)-tau*s; // X = X2 + theta*(X2 - X) x_curr[x] = x_new + theta*(x_new - x_curr[x]); } } } result.create(X.rows,X.cols,CV_8U); X.convertTo(result, CV_8U, 255); } }}