/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "opencv2/video/tracking_c.h" namespace opencv_test { namespace { /* ///////////////////// pyrlk_test ///////////////////////// */ class CV_OptFlowPyrLKTest : public cvtest::BaseTest { public: CV_OptFlowPyrLKTest(); protected: void run(int); }; CV_OptFlowPyrLKTest::CV_OptFlowPyrLKTest() {} void CV_OptFlowPyrLKTest::run( int ) { int code = cvtest::TS::OK; const double success_error_level = 0.3; const int bad_points_max = 8; /* test parameters */ double max_err = 0., sum_err = 0; int pt_cmpd = 0; int pt_exceed = 0; int merr_i = 0, merr_j = 0, merr_k = 0, merr_nan = 0; char filename[1000]; CvPoint2D32f *u = 0, *v = 0, *v2 = 0; CvMat *_u = 0, *_v = 0, *_v2 = 0; char* status = 0; IplImage imgI; IplImage imgJ; cv::Mat imgI2, imgJ2; int n = 0, i = 0; sprintf( filename, "%soptflow/%s", ts->get_data_path().c_str(), "lk_prev.dat" ); _u = (CvMat*)cvLoad( filename ); if( !_u ) { ts->printf( cvtest::TS::LOG, "could not read %s\n", filename ); code = cvtest::TS::FAIL_MISSING_TEST_DATA; goto _exit_; } sprintf( filename, "%soptflow/%s", ts->get_data_path().c_str(), "lk_next.dat" ); _v = (CvMat*)cvLoad( filename ); if( !_v ) { ts->printf( cvtest::TS::LOG, "could not read %s\n", filename ); code = cvtest::TS::FAIL_MISSING_TEST_DATA; goto _exit_; } if( _u->cols != 2 || CV_MAT_TYPE(_u->type) != CV_32F || _v->cols != 2 || CV_MAT_TYPE(_v->type) != CV_32F || _v->rows != _u->rows ) { ts->printf( cvtest::TS::LOG, "the loaded matrices of points are not valid\n" ); code = cvtest::TS::FAIL_MISSING_TEST_DATA; goto _exit_; } u = (CvPoint2D32f*)_u->data.fl; v = (CvPoint2D32f*)_v->data.fl; /* allocate adidtional buffers */ _v2 = cvCloneMat( _u ); v2 = (CvPoint2D32f*)_v2->data.fl; /* read first image */ sprintf( filename, "%soptflow/%s", ts->get_data_path().c_str(), "rock_1.bmp" ); imgI2 = cv::imread( filename, cv::IMREAD_UNCHANGED ); imgI = imgI2; if( imgI2.empty() ) { ts->printf( cvtest::TS::LOG, "could not read %s\n", filename ); code = cvtest::TS::FAIL_MISSING_TEST_DATA; goto _exit_; } /* read second image */ sprintf( filename, "%soptflow/%s", ts->get_data_path().c_str(), "rock_2.bmp" ); imgJ2 = cv::imread( filename, cv::IMREAD_UNCHANGED ); imgJ = imgJ2; if( imgJ2.empty() ) { ts->printf( cvtest::TS::LOG, "could not read %s\n", filename ); code = cvtest::TS::FAIL_MISSING_TEST_DATA; goto _exit_; } n = _u->rows; status = (char*)cvAlloc(n*sizeof(status[0])); /* calculate flow */ cvCalcOpticalFlowPyrLK( &imgI, &imgJ, 0, 0, u, v2, n, cvSize( 41, 41 ), 4, status, 0, cvTermCriteria( CV_TERMCRIT_ITER| CV_TERMCRIT_EPS, 30, 0.01f ), 0 ); /* compare results */ for( i = 0; i < n; i++ ) { if( status[i] != 0 ) { double err; if( cvIsNaN(v[i].x) || cvIsNaN(v[i].y) ) { merr_j++; continue; } if( cvIsNaN(v2[i].x) || cvIsNaN(v2[i].y) ) { merr_nan++; continue; } err = fabs(v2[i].x - v[i].x) + fabs(v2[i].y - v[i].y); if( err > max_err ) { max_err = err; merr_i = i; } pt_exceed += err > success_error_level; sum_err += err; pt_cmpd++; } else { if( !cvIsNaN( v[i].x )) { merr_i = i; merr_k++; ts->printf( cvtest::TS::LOG, "The algorithm lost the point #%d\n", i ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } } } if( pt_exceed > bad_points_max ) { ts->printf( cvtest::TS::LOG, "The number of poorly tracked points is too big (>=%d)\n", pt_exceed ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } if( max_err > 1 ) { ts->printf( cvtest::TS::LOG, "Maximum tracking error is too big (=%g) at %d\n", max_err, merr_i ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } if( merr_nan > 0 ) { ts->printf( cvtest::TS::LOG, "NAN tracking result with status != 0 (%d times)\n", merr_nan ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } _exit_: cvFree( &status ); cvReleaseMat( &_u ); cvReleaseMat( &_v ); cvReleaseMat( &_v2 ); if( code < 0 ) ts->set_failed_test_info( code ); } TEST(Video_OpticalFlowPyrLK, accuracy) { CV_OptFlowPyrLKTest test; test.safe_run(); } TEST(Video_OpticalFlowPyrLK, submat) { // see bug #2075 std::string path = cvtest::TS::ptr()->get_data_path() + "../cv/shared/lena.png"; cv::Mat lenaImg = cv::imread(path); ASSERT_FALSE(lenaImg.empty()); cv::Mat wholeImage; cv::resize(lenaImg, wholeImage, cv::Size(1024, 1024), 0, 0, cv::INTER_LINEAR_EXACT); cv::Mat img1 = wholeImage(cv::Rect(0, 0, 640, 360)).clone(); cv::Mat img2 = wholeImage(cv::Rect(40, 60, 640, 360)); std::vector status; std::vector error; std::vector prev; std::vector next; cv::RNG rng(123123); for(int i = 0; i < 50; ++i) { int x = rng.uniform(0, 640); int y = rng.uniform(0, 360); prev.push_back(cv::Point2f((float)x, (float)y)); } ASSERT_NO_THROW(cv::calcOpticalFlowPyrLK(img1, img2, prev, next, status, error)); } }} // namespace