#include #include "opencv2/core/opengl.hpp" #include "opencv2/cvconfig.h" #include #include #include #ifdef HAVE_OPENGL #ifdef WIN32 #define WIN32_LEAN_AND_MEAN 1 #define NOMINMAX 1 #include #endif #if defined(_WIN64) #include #endif #if defined(__APPLE__) #include #include #else #include #include #endif #endif using namespace std; using namespace cv; static void help() { cout << "\n This program demonstrates how to use MSER to detect extremal regions \n" "Usage: \n" " ./detect_mser \n" "Press esc key when image window is active to change descriptor parameter\n" "Press 2, 8, 4, 6, +,- or 5 keys in openGL windows to change view or use mouse\n"; } struct MSERParams { MSERParams(int _delta = 5, int _min_area = 60, int _max_area = 14400, double _max_variation = 0.25, double _min_diversity = .2, int _max_evolution = 200, double _area_threshold = 1.01, double _min_margin = 0.003, int _edge_blur_size = 5) { delta = _delta; minArea = _min_area; maxArea = _max_area; maxVariation = _max_variation; minDiversity = _min_diversity; maxEvolution = _max_evolution; areaThreshold = _area_threshold; minMargin = _min_margin; edgeBlurSize = _edge_blur_size; pass2Only = false; } int delta; int minArea; int maxArea; double maxVariation; double minDiversity; bool pass2Only; int maxEvolution; double areaThreshold; double minMargin; int edgeBlurSize; }; static String Legende(MSERParams &pAct) { String s=""; String inf = static_cast(&(ostringstream() << pAct.minArea))->str(); String sup = static_cast(&(ostringstream() << pAct.maxArea))->str(); s = " Area[" + inf + "," + sup + "]"; inf = static_cast(&(ostringstream() << pAct.delta))->str(); s += " del. [" + inf + "]"; inf = static_cast(&(ostringstream() << pAct.maxVariation))->str(); s += " var. [" + inf + "]"; inf = static_cast(&(ostringstream() << (int)pAct.minDiversity))->str(); s += " div. [" + inf + "]"; inf = static_cast(&(ostringstream() << (int)pAct.pass2Only))->str(); s += " pas. [" + inf + "]"; inf = static_cast(&(ostringstream() << (int)pAct.maxEvolution))->str(); s += "RGb-> evo. [" + inf + "]"; inf = static_cast(&(ostringstream() << (int)pAct.areaThreshold))->str(); s += " are. [" + inf + "]"; inf = static_cast(&(ostringstream() << (int)pAct.minMargin))->str(); s += " mar. [" + inf + "]"; inf = static_cast(&(ostringstream() << (int)pAct.edgeBlurSize))->str(); s += " siz. [" + inf + "]"; return s; } const int win_width = 800; const int win_height = 640; bool rotateEnable=true; bool keyPressed=false; Vec4f rotAxis(1,0,1,0); Vec3f zoom(1,0,0); float obsX = (float)0, obsY = (float)0, obsZ = (float)-10, tx = (float)0, ty = (float)0; float thetaObs = (float)-1.570, phiObs = (float)1.570, rObs = (float)10; int prevX=-1,prevY=-1,prevTheta=-1000,prevPhi=-1000; #ifdef HAVE_OPENGL struct DrawData { ogl::Arrays arr; ogl::Texture2D tex; ogl::Buffer indices; }; static void draw(void* userdata) { DrawData* data = static_cast(userdata); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); gluLookAt(obsX, obsY, obsZ, 0, 0, .0, .0, 10.0, 0.0); glTranslatef(tx,ty,0); keyPressed = false; ogl::render(data->arr, data->indices, ogl::TRIANGLES); } static void onMouse(int event, int x, int y, int flags, void*) { if (event == EVENT_RBUTTONDOWN) { prevX = x; prevY = y; } if (event == EVENT_RBUTTONUP) { prevX = -1; prevY = -1; } if (prevX != -1) { tx += float((x - prevX) / 100.0); ty -= float((y - prevY) / 100.0); prevX = x; prevY = y; } if (event == EVENT_LBUTTONDOWN) { prevTheta = x; prevPhi = y; } if (event == EVENT_LBUTTONUP) { prevTheta = -1000; prevPhi = -1000; } if (prevTheta != -1000) { if (x - prevTheta<0) { thetaObs +=(float)0.02; } else if (x - prevTheta>0) { thetaObs -= (float)0.02; } if (y - prevPhi<0) { phiObs -= (float)0.02; } else if (y - prevPhi>0) { phiObs += (float)0.02; } prevTheta = x; prevPhi = y; } if (event==EVENT_MOUSEWHEEL) { if (getMouseWheelDelta(flags)>0) rObs += (float)0.1; else rObs -= (float)0.1; } float pi = (float)acos(-1.0); if (thetaObs>pi) { thetaObs = -2 * pi + thetaObs; } if (thetaObs<-pi) { thetaObs = 2 * pi + thetaObs; } if (phiObs>pi / 2) { phiObs = pi / 2 - (float)0.0001; } if (phiObs<-pi / 2) { phiObs = -pi / 2 + (float)0.00001; } if (rObs<0) { rObs = 0; } } #endif #ifdef HAVE_OPENGL static void DrawOpenGLMSER(Mat img, Mat result) { Mat imgGray; if (img.type() != CV_8UC1) cvtColor(img, imgGray, COLOR_BGR2GRAY); else imgGray = img; namedWindow("OpenGL", WINDOW_OPENGL); setMouseCallback("OpenGL", onMouse, NULL); Mat_ vertex(1, img.cols*img.rows); Mat_ texCoords(1, img.cols*img.rows); for (int i = 0, nbPix = 0; i(0, nbPix) = Vec3f(float(2 * (x - 0.5)), float(2 * (0.5 - y)), float(imgGray.at(i, j) / 512.0)); texCoords.at< Vec2f>(0, nbPix) = Vec2f(x, y); } } Mat_ indices(1, (img.rows - 1)*(6 * img.cols)); for (int i = 1, nbPix = 0; i(0, nbPix++) = c ; indices.at(0, nbPix++) = c - 1; indices.at(0, nbPix++) = c- img.cols - 1; indices.at(0, nbPix++) = c- img.cols - 1; indices.at(0, nbPix++) = c - img.cols; indices.at(0, nbPix++) = c ; } } DrawData *data = new DrawData; data->arr.setVertexArray(vertex); data->arr.setTexCoordArray(texCoords); data->indices.copyFrom(indices); data->tex.copyFrom(result); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0, (double)win_width / win_height, 0.0, 1000.0); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glEnable(GL_TEXTURE_2D); data->tex.bind(); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexEnvi(GL_TEXTURE_2D, GL_TEXTURE_ENV_MODE, GL_REPLACE); glDisable(GL_CULL_FACE); setOpenGlDrawCallback("OpenGL", draw, data); for (;;) { updateWindow("OpenGL"); int key = waitKey(40); if ((key & 0xff) == 27) break; if (key == 0x20) rotateEnable = !rotateEnable; float pi = (float)acos(-1); switch (key) { case '5': obsX = 0, obsY = 0, obsZ = -10; thetaObs = -pi/2, phiObs = pi/2, rObs = 10; tx=0;ty=0; break; case '4': thetaObs += (float)0.1; break; case '6': thetaObs -= (float)0.1; break; case '2': phiObs -= (float).1; break; case '8': phiObs += (float).1; break; case '+': rObs -= (float).1; break; case '-': rObs += (float).1; break; } if (thetaObs>pi) { thetaObs = -2 * pi + thetaObs; } if (thetaObs<-pi) thetaObs = 2 * pi + thetaObs; if (phiObs>pi / 2) phiObs = pi / 2 - (float)0.0001; if (phiObs<-pi / 2) phiObs = -pi / 2 + (float)0.00001; if (rObs<0) rObs = 0; obsX = rObs*cos(thetaObs)*cos(phiObs); obsY = rObs*sin(thetaObs)*cos(phiObs); obsZ = rObs*sin(phiObs); } setOpenGlDrawCallback("OpenGL", 0, 0); destroyAllWindows(); } #endif static Mat MakeSyntheticImage() { Mat img(800, 800, CV_8UC1); map val; int fond = 0; img = Scalar(fond); val[fond] = 1; int width1[] = { 390, 380, 300, 290, 280, 270, 260, 250, 210, 190, 150, 100, 80, 70 }; int color1[] = { 80, 180, 160, 140, 120, 100, 90, 110, 170, 150, 140, 100, 220 }; Point p0(10, 10); int *width, *color; width = width1; color = color1; for (int i = 0; i<13; i++) { rectangle(img, Rect(p0, Size(width[i], width[i])), Scalar(color[i]), 1); p0 += Point((width[i] - width[i + 1]) / 2, (width[i] - width[i + 1]) / 2); floodFill(img, p0, Scalar(color[i])); } int color2[] = { 81, 181, 161, 141, 121, 101, 91, 111, 171, 151, 141, 101, 221 }; color = color2; p0 = Point(200, 600); for (int i = 0; i<13; i++) { circle(img, p0, width[i] / 2, Scalar(color[i]), 1); floodFill(img, p0, Scalar(color[i])); } int color3[] = { 175,75,95,115,135,155,165,145,85,105,115,156 }; color = color3; p0 = Point(410, 10); for (int i = 0; i<13; i++) { rectangle(img, Rect(p0, Size(width[i], width[i])), Scalar(color[i]), 1); p0 += Point((width[i] - width[i + 1]) / 2, (width[i] - width[i + 1]) / 2); floodFill(img, p0, Scalar(color[i])); } int color4[] = { 173,73,93,113,133,153,163,143,83,103,114,154 }; color = color4; p0 = Point(600, 600); for (int i = 0; i<13; i++) { circle(img, p0, width[i] / 2, Scalar(color[i]), 1); floodFill(img, p0, Scalar(color[i])); } int histSize = 256; float range[] = { 0, 256 }; const float* histRange[] = { range }; Mat hist; // we compute the histogram calcHist(&img, 1, 0, Mat(), hist, 1, &histSize, histRange, true, false); cout << "****************Maximal region************************\n"; for (int i = 0; i < hist.rows ; i++) { if (hist.at(i, 0)!=0) { cout << "h" << i << "=\t" << hist.at(i, 0) << "\n"; } } return img; } int main(int argc, char *argv[]) { vector fileName; Mat imgOrig,img; Size blurSize(5,5); if (argc==2) { fileName.push_back(argv[1]); imgOrig = imread(fileName[0], IMREAD_GRAYSCALE); blur(imgOrig, img, blurSize); } else { fileName.push_back("SyntheticImage.bmp"); imgOrig = MakeSyntheticImage(); img=imgOrig; } MSERParams pDefaultMSER; // Descriptor array MSER vector typeDesc; // Param array for MSER vector pMSER; vector::iterator itMSER; // Color palette vector palette; for (int i = 0; i<65536; i++) palette.push_back(Vec3b((uchar)rand(), (uchar)rand(), (uchar)rand())); help(); typeDesc.push_back("MSER"); pMSER.push_back(pDefaultMSER); pMSER.back().delta = 10; pMSER.back().minArea = 100; pMSER.back().maxArea = 5000; pMSER.back().maxVariation = 2; pMSER.back().minDiversity = 0; pMSER.back().pass2Only = true; typeDesc.push_back("MSER"); pMSER.push_back(pDefaultMSER); pMSER.back().delta = 10; pMSER.back().minArea = 100; pMSER.back().maxArea = 5000; pMSER.back().maxVariation = 2; pMSER.back().minDiversity = 0; pMSER.back().pass2Only = false; typeDesc.push_back("MSER"); pMSER.push_back(pDefaultMSER); pMSER.back().delta = 100; pMSER.back().minArea = 100; pMSER.back().maxArea = 5000; pMSER.back().maxVariation = 2; pMSER.back().minDiversity = 0; pMSER.back().pass2Only = false; itMSER = pMSER.begin(); vector desMethCmp; Ptr b; String label; // Descriptor loop vector::iterator itDesc; Mat result(img.rows, img.cols, CV_8UC3); for (itDesc = typeDesc.begin(); itDesc != typeDesc.end(); itDesc++) { vector keyImg1; if (*itDesc == "MSER"){ if (img.type() == CV_8UC3) { b = MSER::create(itMSER->delta, itMSER->minArea, itMSER->maxArea, itMSER->maxVariation, itMSER->minDiversity, itMSER->maxEvolution, itMSER->areaThreshold, itMSER->minMargin, itMSER->edgeBlurSize); label = Legende(*itMSER); itMSER++; } else { b = MSER::create(itMSER->delta, itMSER->minArea, itMSER->maxArea, itMSER->maxVariation, itMSER->minDiversity); b.dynamicCast()->setPass2Only(itMSER->pass2Only); label = Legende(*itMSER); itMSER++; } } if (img.type()==CV_8UC3) { img.copyTo(result); } else { vector plan; plan.push_back(img); plan.push_back(img); plan.push_back(img); merge(plan,result); } try { // We can detect regions using detectRegions method vector keyImg; vector zone; vector > region; Mat desc; if (b.dynamicCast() != NULL) { Ptr sbd = b.dynamicCast(); sbd->detectRegions(img, region, zone); int i = 0; //result = Scalar(0, 0, 0); int nbPixelInMSER=0; for (vector >::iterator itr = region.begin(); itr != region.end(); itr++, i++) { for (vector ::iterator itp = region[i].begin(); itp != region[i].end(); itp ++) { // all pixels belonging to region become blue result.at(itp->y, itp->x) = Vec3b(128, 0, 0); nbPixelInMSER++; } } cout << "Number of MSER region " << region.size()<<" Number of pixels in all MSER region : "<