/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #if !defined HAVE_CUDA || defined(CUDA_DISABLER) class cv::gpu::FGDStatModel::Impl { }; cv::gpu::FGDStatModel::Params::Params() { throw_nogpu(); } cv::gpu::FGDStatModel::FGDStatModel(int) { throw_nogpu(); } cv::gpu::FGDStatModel::FGDStatModel(const cv::gpu::GpuMat&, const Params&, int) { throw_nogpu(); } cv::gpu::FGDStatModel::~FGDStatModel() {} void cv::gpu::FGDStatModel::create(const cv::gpu::GpuMat&, const Params&) { throw_nogpu(); } void cv::gpu::FGDStatModel::release() {} int cv::gpu::FGDStatModel::update(const cv::gpu::GpuMat&) { throw_nogpu(); return 0; } #else #include "fgd_bgfg_common.hpp" namespace { class BGPixelStat { public: void create(cv::Size size, const cv::gpu::FGDStatModel::Params& params, int out_cn); void release(); void setTrained(); operator bgfg::BGPixelStat(); private: cv::gpu::GpuMat Pbc_; cv::gpu::GpuMat Pbcc_; cv::gpu::GpuMat is_trained_st_model_; cv::gpu::GpuMat is_trained_dyn_model_; cv::gpu::GpuMat ctable_Pv_; cv::gpu::GpuMat ctable_Pvb_; cv::gpu::GpuMat ctable_v_; cv::gpu::GpuMat cctable_Pv_; cv::gpu::GpuMat cctable_Pvb_; cv::gpu::GpuMat cctable_v1_; cv::gpu::GpuMat cctable_v2_; }; void BGPixelStat::create(cv::Size size, const cv::gpu::FGDStatModel::Params& params, int out_cn) { cv::gpu::ensureSizeIsEnough(size, CV_32FC1, Pbc_); Pbc_.setTo(cv::Scalar::all(0)); cv::gpu::ensureSizeIsEnough(size, CV_32FC1, Pbcc_); Pbcc_.setTo(cv::Scalar::all(0)); cv::gpu::ensureSizeIsEnough(size, CV_8UC1, is_trained_st_model_); is_trained_st_model_.setTo(cv::Scalar::all(0)); cv::gpu::ensureSizeIsEnough(size, CV_8UC1, is_trained_dyn_model_); is_trained_dyn_model_.setTo(cv::Scalar::all(0)); cv::gpu::ensureSizeIsEnough(params.N2c * size.height, size.width, CV_32FC1, ctable_Pv_); ctable_Pv_.setTo(cv::Scalar::all(0)); cv::gpu::ensureSizeIsEnough(params.N2c * size.height, size.width, CV_32FC1, ctable_Pvb_); ctable_Pvb_.setTo(cv::Scalar::all(0)); cv::gpu::ensureSizeIsEnough(params.N2c * size.height, size.width, CV_8UC(out_cn), ctable_v_); ctable_v_.setTo(cv::Scalar::all(0)); cv::gpu::ensureSizeIsEnough(params.N2cc * size.height, size.width, CV_32FC1, cctable_Pv_); cctable_Pv_.setTo(cv::Scalar::all(0)); cv::gpu::ensureSizeIsEnough(params.N2cc * size.height, size.width, CV_32FC1, cctable_Pvb_); cctable_Pvb_.setTo(cv::Scalar::all(0)); cv::gpu::ensureSizeIsEnough(params.N2cc * size.height, size.width, CV_8UC(out_cn), cctable_v1_); cctable_v1_.setTo(cv::Scalar::all(0)); cv::gpu::ensureSizeIsEnough(params.N2cc * size.height, size.width, CV_8UC(out_cn), cctable_v2_); cctable_v2_.setTo(cv::Scalar::all(0)); } void BGPixelStat::release() { Pbc_.release(); Pbcc_.release(); is_trained_st_model_.release(); is_trained_dyn_model_.release(); ctable_Pv_.release(); ctable_Pvb_.release(); ctable_v_.release(); cctable_Pv_.release(); cctable_Pvb_.release(); cctable_v1_.release(); cctable_v2_.release(); } void BGPixelStat::setTrained() { is_trained_st_model_.setTo(cv::Scalar::all(1)); is_trained_dyn_model_.setTo(cv::Scalar::all(1)); } BGPixelStat::operator bgfg::BGPixelStat() { bgfg::BGPixelStat stat; stat.rows_ = Pbc_.rows; stat.Pbc_data_ = Pbc_.data; stat.Pbc_step_ = Pbc_.step; stat.Pbcc_data_ = Pbcc_.data; stat.Pbcc_step_ = Pbcc_.step; stat.is_trained_st_model_data_ = is_trained_st_model_.data; stat.is_trained_st_model_step_ = is_trained_st_model_.step; stat.is_trained_dyn_model_data_ = is_trained_dyn_model_.data; stat.is_trained_dyn_model_step_ = is_trained_dyn_model_.step; stat.ctable_Pv_data_ = ctable_Pv_.data; stat.ctable_Pv_step_ = ctable_Pv_.step; stat.ctable_Pvb_data_ = ctable_Pvb_.data; stat.ctable_Pvb_step_ = ctable_Pvb_.step; stat.ctable_v_data_ = ctable_v_.data; stat.ctable_v_step_ = ctable_v_.step; stat.cctable_Pv_data_ = cctable_Pv_.data; stat.cctable_Pv_step_ = cctable_Pv_.step; stat.cctable_Pvb_data_ = cctable_Pvb_.data; stat.cctable_Pvb_step_ = cctable_Pvb_.step; stat.cctable_v1_data_ = cctable_v1_.data; stat.cctable_v1_step_ = cctable_v1_.step; stat.cctable_v2_data_ = cctable_v2_.data; stat.cctable_v2_step_ = cctable_v2_.step; return stat; } } class cv::gpu::FGDStatModel::Impl { public: Impl(cv::gpu::GpuMat& background, cv::gpu::GpuMat& foreground, std::vector< std::vector >& foreground_regions, int out_cn); ~Impl(); void create(const cv::gpu::GpuMat& firstFrame, const cv::gpu::FGDStatModel::Params& params); void release(); int update(const cv::gpu::GpuMat& curFrame); private: Impl(const Impl&); Impl& operator=(const Impl&); int out_cn_; cv::gpu::FGDStatModel::Params params_; cv::gpu::GpuMat& background_; cv::gpu::GpuMat& foreground_; std::vector< std::vector >& foreground_regions_; cv::Mat h_foreground_; cv::gpu::GpuMat prevFrame_; cv::gpu::GpuMat Ftd_; cv::gpu::GpuMat Fbd_; BGPixelStat stat_; cv::gpu::GpuMat hist_; cv::gpu::GpuMat histBuf_; cv::gpu::GpuMat countBuf_; cv::gpu::GpuMat buf_; cv::gpu::GpuMat filterBuf_; cv::gpu::GpuMat filterBrd_; cv::Ptr dilateFilter_; cv::Ptr erodeFilter_; CvMemStorage* storage_; }; cv::gpu::FGDStatModel::Impl::Impl(cv::gpu::GpuMat& background, cv::gpu::GpuMat& foreground, std::vector< std::vector >& foreground_regions, int out_cn) : out_cn_(out_cn), background_(background), foreground_(foreground), foreground_regions_(foreground_regions) { CV_Assert( out_cn_ == 3 || out_cn_ == 4 ); storage_ = cvCreateMemStorage(); CV_Assert( storage_ != 0 ); } cv::gpu::FGDStatModel::Impl::~Impl() { cvReleaseMemStorage(&storage_); } namespace { void copyChannels(const cv::gpu::GpuMat& src, cv::gpu::GpuMat& dst, int dst_cn = -1) { const int src_cn = src.channels(); if (dst_cn < 0) dst_cn = src_cn; cv::gpu::ensureSizeIsEnough(src.size(), CV_MAKE_TYPE(src.depth(), dst_cn), dst); if (src_cn == dst_cn) src.copyTo(dst); else { static const int cvt_codes[4][4] = { {-1, -1, cv::COLOR_GRAY2BGR, cv::COLOR_GRAY2BGRA}, {-1, -1, -1, -1}, {cv::COLOR_BGR2GRAY, -1, -1, cv::COLOR_BGR2BGRA}, {cv::COLOR_BGRA2GRAY, -1, cv::COLOR_BGRA2BGR, -1} }; const int cvt_code = cvt_codes[src_cn - 1][dst_cn - 1]; CV_DbgAssert( cvt_code >= 0 ); cv::gpu::cvtColor(src, dst, cvt_code, dst_cn); } } } void cv::gpu::FGDStatModel::Impl::create(const cv::gpu::GpuMat& firstFrame, const cv::gpu::FGDStatModel::Params& params) { CV_Assert(firstFrame.type() == CV_8UC3 || firstFrame.type() == CV_8UC4); params_ = params; cv::gpu::ensureSizeIsEnough(firstFrame.size(), CV_8UC1, foreground_); copyChannels(firstFrame, background_, out_cn_); copyChannels(firstFrame, prevFrame_); cv::gpu::ensureSizeIsEnough(firstFrame.size(), CV_8UC1, Ftd_); cv::gpu::ensureSizeIsEnough(firstFrame.size(), CV_8UC1, Fbd_); stat_.create(firstFrame.size(), params_, out_cn_); bgfg::setBGPixelStat(stat_); if (params_.perform_morphing > 0) { cv::Mat kernel = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(1 + params_.perform_morphing * 2, 1 + params_.perform_morphing * 2)); cv::Point anchor(params_.perform_morphing, params_.perform_morphing); dilateFilter_ = cv::gpu::createMorphologyFilter_GPU(cv::MORPH_DILATE, CV_8UC1, kernel, filterBuf_, anchor); erodeFilter_ = cv::gpu::createMorphologyFilter_GPU(cv::MORPH_ERODE, CV_8UC1, kernel, filterBuf_, anchor); } } void cv::gpu::FGDStatModel::Impl::release() { background_.release(); foreground_.release(); prevFrame_.release(); Ftd_.release(); Fbd_.release(); stat_.release(); hist_.release(); histBuf_.release(); countBuf_.release(); buf_.release(); filterBuf_.release(); filterBrd_.release(); } ///////////////////////////////////////////////////////////////////////// // changeDetection namespace { void calcDiffHistogram(const cv::gpu::GpuMat& prevFrame, const cv::gpu::GpuMat& curFrame, cv::gpu::GpuMat& hist, cv::gpu::GpuMat& histBuf) { typedef void (*func_t)(cv::gpu::PtrStepSzb prevFrame, cv::gpu::PtrStepSzb curFrame, unsigned int* hist0, unsigned int* hist1, unsigned int* hist2, unsigned int* partialBuf0, unsigned int* partialBuf1, unsigned int* partialBuf2, int cc, cudaStream_t stream); static const func_t funcs[4][4] = { {0,0,0,0}, {0,0,0,0}, {0,0,bgfg::calcDiffHistogram_gpu,bgfg::calcDiffHistogram_gpu}, {0,0,bgfg::calcDiffHistogram_gpu,bgfg::calcDiffHistogram_gpu} }; hist.create(3, 256, CV_32SC1); histBuf.create(3, bgfg::PARTIAL_HISTOGRAM_COUNT * bgfg::HISTOGRAM_BIN_COUNT, CV_32SC1); cv::gpu::DeviceInfo devInfo; int cc = devInfo.majorVersion() * 10 + devInfo.minorVersion(); funcs[prevFrame.channels() - 1][curFrame.channels() - 1]( prevFrame, curFrame, hist.ptr(0), hist.ptr(1), hist.ptr(2), histBuf.ptr(0), histBuf.ptr(1), histBuf.ptr(2), cc, 0); } void calcRelativeVariance(unsigned int hist[3 * 256], double relativeVariance[3][bgfg::HISTOGRAM_BIN_COUNT]) { std::memset(relativeVariance, 0, 3 * bgfg::HISTOGRAM_BIN_COUNT * sizeof(double)); for (int thres = bgfg::HISTOGRAM_BIN_COUNT - 2; thres >= 0; --thres) { cv::Vec3d sum(0.0, 0.0, 0.0); cv::Vec3d sqsum(0.0, 0.0, 0.0); cv::Vec3i count(0, 0, 0); for (int j = thres; j < bgfg::HISTOGRAM_BIN_COUNT; ++j) { sum[0] += static_cast(j) * hist[j]; sqsum[0] += static_cast(j * j) * hist[j]; count[0] += hist[j]; sum[1] += static_cast(j) * hist[j + 256]; sqsum[1] += static_cast(j * j) * hist[j + 256]; count[1] += hist[j + 256]; sum[2] += static_cast(j) * hist[j + 512]; sqsum[2] += static_cast(j * j) * hist[j + 512]; count[2] += hist[j + 512]; } count[0] = std::max(count[0], 1); count[1] = std::max(count[1], 1); count[2] = std::max(count[2], 1); cv::Vec3d my( sum[0] / count[0], sum[1] / count[1], sum[2] / count[2] ); relativeVariance[0][thres] = std::sqrt(sqsum[0] / count[0] - my[0] * my[0]); relativeVariance[1][thres] = std::sqrt(sqsum[1] / count[1] - my[1] * my[1]); relativeVariance[2][thres] = std::sqrt(sqsum[2] / count[2] - my[2] * my[2]); } } void calcDiffThreshMask(const cv::gpu::GpuMat& prevFrame, const cv::gpu::GpuMat& curFrame, cv::Vec3d bestThres, cv::gpu::GpuMat& changeMask) { typedef void (*func_t)(cv::gpu::PtrStepSzb prevFrame, cv::gpu::PtrStepSzb curFrame, uchar3 bestThres, cv::gpu::PtrStepSzb changeMask, cudaStream_t stream); static const func_t funcs[4][4] = { {0,0,0,0}, {0,0,0,0}, {0,0,bgfg::calcDiffThreshMask_gpu,bgfg::calcDiffThreshMask_gpu}, {0,0,bgfg::calcDiffThreshMask_gpu,bgfg::calcDiffThreshMask_gpu} }; changeMask.setTo(cv::Scalar::all(0)); funcs[prevFrame.channels() - 1][curFrame.channels() - 1](prevFrame, curFrame, make_uchar3((uchar)bestThres[0], (uchar)bestThres[1], (uchar)bestThres[2]), changeMask, 0); } // performs change detection for Foreground detection algorithm void changeDetection(const cv::gpu::GpuMat& prevFrame, const cv::gpu::GpuMat& curFrame, cv::gpu::GpuMat& changeMask, cv::gpu::GpuMat& hist, cv::gpu::GpuMat& histBuf) { calcDiffHistogram(prevFrame, curFrame, hist, histBuf); unsigned int histData[3 * 256]; cv::Mat h_hist(3, 256, CV_32SC1, histData); hist.download(h_hist); double relativeVariance[3][bgfg::HISTOGRAM_BIN_COUNT]; calcRelativeVariance(histData, relativeVariance); // Find maximum: cv::Vec3d bestThres(10.0, 10.0, 10.0); for (int i = 0; i < bgfg::HISTOGRAM_BIN_COUNT; ++i) { bestThres[0] = std::max(bestThres[0], relativeVariance[0][i]); bestThres[1] = std::max(bestThres[1], relativeVariance[1][i]); bestThres[2] = std::max(bestThres[2], relativeVariance[2][i]); } calcDiffThreshMask(prevFrame, curFrame, bestThres, changeMask); } } ///////////////////////////////////////////////////////////////////////// // bgfgClassification namespace { int bgfgClassification(const cv::gpu::GpuMat& prevFrame, const cv::gpu::GpuMat& curFrame, const cv::gpu::GpuMat& Ftd, const cv::gpu::GpuMat& Fbd, cv::gpu::GpuMat& foreground, cv::gpu::GpuMat& countBuf, const cv::gpu::FGDStatModel::Params& params, int out_cn) { typedef void (*func_t)(cv::gpu::PtrStepSzb prevFrame, cv::gpu::PtrStepSzb curFrame, cv::gpu::PtrStepSzb Ftd, cv::gpu::PtrStepSzb Fbd, cv::gpu::PtrStepSzb foreground, int deltaC, int deltaCC, float alpha2, int N1c, int N1cc, cudaStream_t stream); static const func_t funcs[4][4][4] = { { {0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0} }, { {0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0} }, { {0,0,0,0}, {0,0,0,0}, {0,0,bgfg::bgfgClassification_gpu,bgfg::bgfgClassification_gpu}, {0,0,bgfg::bgfgClassification_gpu,bgfg::bgfgClassification_gpu} }, { {0,0,0,0}, {0,0,0,0}, {0,0,bgfg::bgfgClassification_gpu,bgfg::bgfgClassification_gpu}, {0,0,bgfg::bgfgClassification_gpu,bgfg::bgfgClassification_gpu} } }; const int deltaC = cvRound(params.delta * 256 / params.Lc); const int deltaCC = cvRound(params.delta * 256 / params.Lcc); funcs[prevFrame.channels() - 1][curFrame.channels() - 1][out_cn - 1](prevFrame, curFrame, Ftd, Fbd, foreground, deltaC, deltaCC, params.alpha2, params.N1c, params.N1cc, 0); int count = cv::gpu::countNonZero(foreground, countBuf); cv::gpu::multiply(foreground, cv::Scalar::all(255), foreground); return count; } } ///////////////////////////////////////////////////////////////////////// // smoothForeground namespace { void morphology(const cv::gpu::GpuMat& src, cv::gpu::GpuMat& dst, cv::gpu::GpuMat& filterBrd, int brd, cv::Ptr& filter, cv::Scalar brdVal) { cv::gpu::copyMakeBorder(src, filterBrd, brd, brd, brd, brd, cv::BORDER_CONSTANT, brdVal); filter->apply(filterBrd(cv::Rect(brd, brd, src.cols, src.rows)), dst, cv::Rect(0, 0, src.cols, src.rows)); } void smoothForeground(cv::gpu::GpuMat& foreground, cv::gpu::GpuMat& filterBrd, cv::gpu::GpuMat& buf, cv::Ptr& erodeFilter, cv::Ptr& dilateFilter, const cv::gpu::FGDStatModel::Params& params) { const int brd = params.perform_morphing; const cv::Scalar erodeBrdVal = cv::Scalar::all(UCHAR_MAX); const cv::Scalar dilateBrdVal = cv::Scalar::all(0); // MORPH_OPEN morphology(foreground, buf, filterBrd, brd, erodeFilter, erodeBrdVal); morphology(buf, foreground, filterBrd, brd, dilateFilter, dilateBrdVal); // MORPH_CLOSE morphology(foreground, buf, filterBrd, brd, dilateFilter, dilateBrdVal); morphology(buf, foreground, filterBrd, brd, erodeFilter, erodeBrdVal); } } ///////////////////////////////////////////////////////////////////////// // findForegroundRegions namespace { void seqToContours(CvSeq* _ccontours, CvMemStorage* storage, cv::OutputArrayOfArrays _contours) { cv::Seq all_contours(cvTreeToNodeSeq(_ccontours, sizeof(CvSeq), storage)); size_t total = all_contours.size(); _contours.create(total, 1, 0, -1, true); cv::SeqIterator it = all_contours.begin(); for (size_t i = 0; i < total; ++i, ++it) { CvSeq* c = *it; ((CvContour*)c)->color = (int)i; _contours.create((int)c->total, 1, CV_32SC2, i, true); cv::Mat ci = _contours.getMat(i); CV_Assert( ci.isContinuous() ); cvCvtSeqToArray(c, ci.data); } } int findForegroundRegions(cv::gpu::GpuMat& d_foreground, cv::Mat& h_foreground, std::vector< std::vector >& foreground_regions, CvMemStorage* storage, const cv::gpu::FGDStatModel::Params& params) { int region_count = 0; // Discard under-size foreground regions: d_foreground.download(h_foreground); IplImage ipl_foreground = h_foreground; CvSeq* first_seq = 0; cvFindContours(&ipl_foreground, storage, &first_seq, sizeof(CvContour), CV_RETR_LIST); for (CvSeq* seq = first_seq; seq; seq = seq->h_next) { CvContour* cnt = reinterpret_cast(seq); if (cnt->rect.width * cnt->rect.height < params.minArea || (params.is_obj_without_holes && CV_IS_SEQ_HOLE(seq))) { // Delete under-size contour: CvSeq* prev_seq = seq->h_prev; if (prev_seq) { prev_seq->h_next = seq->h_next; if (seq->h_next) seq->h_next->h_prev = prev_seq; } else { first_seq = seq->h_next; if (seq->h_next) seq->h_next->h_prev = NULL; } } else { region_count++; } } seqToContours(first_seq, storage, foreground_regions); h_foreground.setTo(0); cv::drawContours(h_foreground, foreground_regions, -1, cv::Scalar::all(255), -1); d_foreground.upload(h_foreground); return region_count; } } ///////////////////////////////////////////////////////////////////////// // updateBackgroundModel namespace { void updateBackgroundModel(const cv::gpu::GpuMat& prevFrame, const cv::gpu::GpuMat& curFrame, const cv::gpu::GpuMat& Ftd, const cv::gpu::GpuMat& Fbd, const cv::gpu::GpuMat& foreground, cv::gpu::GpuMat& background, const cv::gpu::FGDStatModel::Params& params) { typedef void (*func_t)(cv::gpu::PtrStepSzb prevFrame, cv::gpu::PtrStepSzb curFrame, cv::gpu::PtrStepSzb Ftd, cv::gpu::PtrStepSzb Fbd, cv::gpu::PtrStepSzb foreground, cv::gpu::PtrStepSzb background, int deltaC, int deltaCC, float alpha1, float alpha2, float alpha3, int N1c, int N1cc, int N2c, int N2cc, float T, cudaStream_t stream); static const func_t funcs[4][4][4] = { { {0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0} }, { {0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0} }, { {0,0,0,0}, {0,0,0,0}, {0,0,bgfg::updateBackgroundModel_gpu,bgfg::updateBackgroundModel_gpu}, {0,0,bgfg::updateBackgroundModel_gpu,bgfg::updateBackgroundModel_gpu} }, { {0,0,0,0}, {0,0,0,0}, {0,0,bgfg::updateBackgroundModel_gpu,bgfg::updateBackgroundModel_gpu}, {0,0,bgfg::updateBackgroundModel_gpu,bgfg::updateBackgroundModel_gpu} } }; const int deltaC = cvRound(params.delta * 256 / params.Lc); const int deltaCC = cvRound(params.delta * 256 / params.Lcc); funcs[prevFrame.channels() - 1][curFrame.channels() - 1][background.channels() - 1]( prevFrame, curFrame, Ftd, Fbd, foreground, background, deltaC, deltaCC, params.alpha1, params.alpha2, params.alpha3, params.N1c, params.N1cc, params.N2c, params.N2cc, params.T, 0); } } ///////////////////////////////////////////////////////////////////////// // Impl::update int cv::gpu::FGDStatModel::Impl::update(const cv::gpu::GpuMat& curFrame) { CV_Assert(curFrame.type() == CV_8UC3 || curFrame.type() == CV_8UC4); CV_Assert(curFrame.size() == prevFrame_.size()); cvClearMemStorage(storage_); foreground_regions_.clear(); foreground_.setTo(cv::Scalar::all(0)); changeDetection(prevFrame_, curFrame, Ftd_, hist_, histBuf_); changeDetection(background_, curFrame, Fbd_, hist_, histBuf_); int FG_pixels_count = bgfgClassification(prevFrame_, curFrame, Ftd_, Fbd_, foreground_, countBuf_, params_, out_cn_); if (params_.perform_morphing > 0) smoothForeground(foreground_, filterBrd_, buf_, erodeFilter_, dilateFilter_, params_); int region_count = 0; if (params_.minArea > 0 || params_.is_obj_without_holes) region_count = findForegroundRegions(foreground_, h_foreground_, foreground_regions_, storage_, params_); // Check ALL BG update condition: const double BGFG_FGD_BG_UPDATE_TRESH = 0.5; if (static_cast(FG_pixels_count) / Ftd_.size().area() > BGFG_FGD_BG_UPDATE_TRESH) stat_.setTrained(); updateBackgroundModel(prevFrame_, curFrame, Ftd_, Fbd_, foreground_, background_, params_); copyChannels(curFrame, prevFrame_); return region_count; } namespace { // Default parameters of foreground detection algorithm: const int BGFG_FGD_LC = 128; const int BGFG_FGD_N1C = 15; const int BGFG_FGD_N2C = 25; const int BGFG_FGD_LCC = 64; const int BGFG_FGD_N1CC = 25; const int BGFG_FGD_N2CC = 40; // Background reference image update parameter: const float BGFG_FGD_ALPHA_1 = 0.1f; // stat model update parameter // 0.002f ~ 1K frame(~45sec), 0.005 ~ 18sec (if 25fps and absolutely static BG) const float BGFG_FGD_ALPHA_2 = 0.005f; // start value for alpha parameter (to fast initiate statistic model) const float BGFG_FGD_ALPHA_3 = 0.1f; const float BGFG_FGD_DELTA = 2.0f; const float BGFG_FGD_T = 0.9f; const float BGFG_FGD_MINAREA= 15.0f; } cv::gpu::FGDStatModel::Params::Params() { Lc = BGFG_FGD_LC; N1c = BGFG_FGD_N1C; N2c = BGFG_FGD_N2C; Lcc = BGFG_FGD_LCC; N1cc = BGFG_FGD_N1CC; N2cc = BGFG_FGD_N2CC; delta = BGFG_FGD_DELTA; alpha1 = BGFG_FGD_ALPHA_1; alpha2 = BGFG_FGD_ALPHA_2; alpha3 = BGFG_FGD_ALPHA_3; T = BGFG_FGD_T; minArea = BGFG_FGD_MINAREA; is_obj_without_holes = true; perform_morphing = 1; } cv::gpu::FGDStatModel::FGDStatModel(int out_cn) { impl_.reset(new Impl(background, foreground, foreground_regions, out_cn)); } cv::gpu::FGDStatModel::FGDStatModel(const cv::gpu::GpuMat& firstFrame, const Params& params, int out_cn) { impl_.reset(new Impl(background, foreground, foreground_regions, out_cn)); create(firstFrame, params); } cv::gpu::FGDStatModel::~FGDStatModel() { } void cv::gpu::FGDStatModel::create(const cv::gpu::GpuMat& firstFrame, const Params& params) { impl_->create(firstFrame, params); } void cv::gpu::FGDStatModel::release() { impl_->release(); } int cv::gpu::FGDStatModel::update(const cv::gpu::GpuMat& curFrame) { return impl_->update(curFrame); } #endif // HAVE_CUDA