.. _remap: Remapping ********* Goal ==== In this tutorial you will learn how to: a. Use the OpenCV function :remap:`remap <>` to implement simple remapping routines. Theory ====== What is remapping? ------------------ * It is the process of taking pixels from one place in the image and locating them in another position in a new image. * To accomplish the mapping process, it might be necessary to do some interpolation for non-integer pixel locations, since there will not always be a one-to-one-pixel correspondence between source and destination images. * We can express the remap for every pixel location :math:`(x,y)` as: .. math:: g(x,y) = f ( h(x,y) ) where :math:`g()` is the remapped image, :math:`f()` the source image and :math:`h(x,y)` is the mapping function that operates on :math:`(x,y)`. * Let's think in a quick example. Imagine that we have an image :math:`I` and, say, we want to do a remap such that: .. math:: h(x,y) = (I.cols - x, y ) What would happen? It is easily seen that the image would flip in the :math:`x` direction. For instance, consider the input image: .. image:: images/Remap_Tutorial_Theory_0.jpg :alt: Original test image :width: 120pt :align: center observe how the red circle changes positions with respect to x (considering :math:`x` the horizontal direction): .. image:: images/Remap_Tutorial_Theory_1.jpg :alt: Original test image :width: 120pt :align: center * In OpenCV, the function :remap:`remap <>` offers a simple remapping implementation. Code ==== #. **What does this program do?** * Loads an image * Each second, apply 1 of 4 different remapping processes to the image and display them indefinitely in a window. * Wait for the user to exit the program #. The tutorial code's is shown lines below. You can also download it from `here <https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp>`_ .. code-block:: cpp #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include <iostream> #include <stdio.h> using namespace cv; /// Global variables Mat src, dst; Mat map_x, map_y; char* remap_window = "Remap demo"; int ind = 0; /// Function Headers void update_map( void ); /** * @function main */ int main( int argc, char** argv ) { /// Load the image src = imread( argv[1], 1 ); /// Create dst, map_x and map_y with the same size as src: dst.create( src.size(), src.type() ); map_x.create( src.size(), CV_32FC1 ); map_y.create( src.size(), CV_32FC1 ); /// Create window namedWindow( remap_window, CV_WINDOW_AUTOSIZE ); /// Loop while( true ) { /// Each 1 sec. Press ESC to exit the program int c = waitKey( 1000 ); if( (char)c == 27 ) { break; } /// Update map_x & map_y. Then apply remap update_map(); remap( src, dst, map_x, map_y, CV_INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) ); /// Display results imshow( remap_window, dst ); } return 0; } /** * @function update_map * @brief Fill the map_x and map_y matrices with 4 types of mappings */ void update_map( void ) { ind = ind%4; for( int j = 0; j < src.rows; j++ ) { for( int i = 0; i < src.cols; i++ ) { switch( ind ) { case 0: if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 ) { map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ; map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ; } else { map_x.at<float>(j,i) = 0 ; map_y.at<float>(j,i) = 0 ; } break; case 1: map_x.at<float>(j,i) = i ; map_y.at<float>(j,i) = src.rows - j ; break; case 2: map_x.at<float>(j,i) = src.cols - i ; map_y.at<float>(j,i) = j ; break; case 3: map_x.at<float>(j,i) = src.cols - i ; map_y.at<float>(j,i) = src.rows - j ; break; } // end of switch } } ind++; } Explanation =========== #. Create some variables we will use: .. code-block:: cpp Mat src, dst; Mat map_x, map_y; char* remap_window = "Remap demo"; int ind = 0; #. Load an image: .. code-block:: cpp src = imread( argv[1], 1 ); #. Create the destination image and the two mapping matrices (for x and y ) .. code-block:: cpp dst.create( src.size(), src.type() ); map_x.create( src.size(), CV_32FC1 ); map_y.create( src.size(), CV_32FC1 ); #. Create a window to display results .. code-block:: cpp namedWindow( remap_window, CV_WINDOW_AUTOSIZE ); #. Establish a loop. Each 1000 ms we update our mapping matrices (*mat_x* and *mat_y*) and apply them to our source image: .. code-block:: cpp while( true ) { /// Each 1 sec. Press ESC to exit the program int c = waitKey( 1000 ); if( (char)c == 27 ) { break; } /// Update map_x & map_y. Then apply remap update_map(); remap( src, dst, map_x, map_y, CV_INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) ); /// Display results imshow( remap_window, dst ); } The function that applies the remapping is :remap:`remap <>`. We give the following arguments: * **src**: Source image * **dst**: Destination image of same size as *src* * **map_x**: The mapping function in the x direction. It is equivalent to the first component of :math:`h(i,j)` * **map_y**: Same as above, but in y direction. Note that *map_y* and *map_x* are both of the same size as *src* * **CV_INTER_LINEAR**: The type of interpolation to use for non-integer pixels. This is by default. * **BORDER_CONSTANT**: Default How do we update our mapping matrices *mat_x* and *mat_y*? Go on reading: #. **Updating the mapping matrices:** We are going to perform 4 different mappings: a. Reduce the picture to half its size and will display it in the middle: .. math:: h(i,j) = ( 2*i - src.cols/2 + 0.5, 2*j - src.rows/2 + 0.5) for all pairs :math:`(i,j)` such that: :math:`\dfrac{src.cols}{4}<i<\dfrac{3 \cdot src.cols}{4}` and :math:`\dfrac{src.rows}{4}<j<\dfrac{3 \cdot src.rows}{4}` b. Turn the image upside down: :math:`h( i, j ) = (i, src.rows - j)` c. Reflect the image from left to right: :math:`h(i,j) = ( src.cols - i, j )` d. Combination of b and c: :math:`h(i,j) = ( src.cols - i, src.rows - j )` This is expressed in the following snippet. Here, *map_x* represents the first coordinate of *h(i,j)* and *map_y* the second coordinate. .. code-block:: cpp for( int j = 0; j < src.rows; j++ ) { for( int i = 0; i < src.cols; i++ ) { switch( ind ) { case 0: if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 ) { map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ; map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ; } else { map_x.at<float>(j,i) = 0 ; map_y.at<float>(j,i) = 0 ; } break; case 1: map_x.at<float>(j,i) = i ; map_y.at<float>(j,i) = src.rows - j ; break; case 2: map_x.at<float>(j,i) = src.cols - i ; map_y.at<float>(j,i) = j ; break; case 3: map_x.at<float>(j,i) = src.cols - i ; map_y.at<float>(j,i) = src.rows - j ; break; } // end of switch } } ind++; } Result ====== #. After compiling the code above, you can execute it giving as argument an image path. For instance, by using the following image: .. image:: images/Remap_Tutorial_Original_Image.jpg :alt: Original test image :width: 250pt :align: center #. This is the result of reducing it to half the size and centering it: .. image:: images/Remap_Tutorial_Result_0.jpg :alt: Result 0 for remapping :width: 250pt :align: center #. Turning it upside down: .. image:: images/Remap_Tutorial_Result_1.jpg :alt: Result 0 for remapping :width: 250pt :align: center #. Reflecting it in the x direction: .. image:: images/Remap_Tutorial_Result_2.jpg :alt: Result 0 for remapping :width: 250pt :align: center #. Reflecting it in both directions: .. image:: images/Remap_Tutorial_Result_3.jpg :alt: Result 0 for remapping :width: 250pt :align: center