// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2023 Intel Corporation #if defined HAVE_INF_ENGINE && INF_ENGINE_RELEASE >= 2022010000 #include "../test_precomp.hpp" #include "backends/ov/util.hpp" #include #include namespace opencv_test { namespace { // FIXME: taken from DNN module void initDLDTDataPath() { #ifndef WINRT static bool initialized = false; if (!initialized) { const char* omzDataPath = getenv("OPENCV_OPEN_MODEL_ZOO_DATA_PATH"); if (omzDataPath) cvtest::addDataSearchPath(omzDataPath); const char* dnnDataPath = getenv("OPENCV_DNN_TEST_DATA_PATH"); if (dnnDataPath) { // Add the dnnDataPath itself - G-API is using some images there directly cvtest::addDataSearchPath(dnnDataPath); cvtest::addDataSearchPath(dnnDataPath + std::string("/omz_intel_models")); } initialized = true; } #endif // WINRT } static const std::string SUBDIR = "intel/age-gender-recognition-retail-0013/FP32/"; // FIXME: taken from the DNN module void normAssert(cv::InputArray ref, cv::InputArray test, const char *comment /*= ""*/, double l1 = 0.00001, double lInf = 0.0001) { double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total(); EXPECT_LE(normL1, l1) << comment; double normInf = cvtest::norm(ref, test, cv::NORM_INF); EXPECT_LE(normInf, lInf) << comment; } // TODO: AGNetGenComp, AGNetTypedComp, AGNetOVComp, AGNetOVCompiled // can be generalized to work with any model and used as parameters for tests. struct AGNetGenParams { static constexpr const char* tag = "age-gender-generic"; using Params = cv::gapi::ov::Params; static Params params(const std::string &xml, const std::string &bin, const std::string &device) { return {tag, xml, bin, device}; } static Params params(const std::string &blob_path, const std::string &device) { return {tag, blob_path, device}; } }; struct AGNetTypedParams { using AGInfo = std::tuple; G_API_NET(AgeGender, , "typed-age-gender"); using Params = cv::gapi::ov::Params; static Params params(const std::string &xml_path, const std::string &bin_path, const std::string &device) { return Params { xml_path, bin_path, device }.cfgOutputLayers({ "age_conv3", "prob" }); } }; struct AGNetTypedComp : AGNetTypedParams { static cv::GComputation create() { cv::GMat in; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(in); return cv::GComputation{cv::GIn(in), cv::GOut(age, gender)}; } }; struct AGNetGenComp : public AGNetGenParams { static cv::GComputation create() { cv::GMat in; GInferInputs inputs; inputs["data"] = in; auto outputs = cv::gapi::infer(tag, inputs); auto age = outputs.at("age_conv3"); auto gender = outputs.at("prob"); return cv::GComputation{cv::GIn(in), cv::GOut(age, gender)}; } }; struct AGNetROIGenComp : AGNetGenParams { static cv::GComputation create() { cv::GMat in; cv::GOpaque roi; GInferInputs inputs; inputs["data"] = in; auto outputs = cv::gapi::infer(tag, roi, inputs); auto age = outputs.at("age_conv3"); auto gender = outputs.at("prob"); return cv::GComputation{cv::GIn(in, roi), cv::GOut(age, gender)}; } }; struct AGNetListGenComp : AGNetGenParams { static cv::GComputation create() { cv::GMat in; cv::GArray rois; GInferInputs inputs; inputs["data"] = in; auto outputs = cv::gapi::infer(tag, rois, inputs); auto age = outputs.at("age_conv3"); auto gender = outputs.at("prob"); return cv::GComputation{cv::GIn(in, rois), cv::GOut(age, gender)}; } }; struct AGNetList2GenComp : AGNetGenParams { static cv::GComputation create() { cv::GMat in; cv::GArray rois; GInferListInputs list; list["data"] = rois; auto outputs = cv::gapi::infer2(tag, in, list); auto age = outputs.at("age_conv3"); auto gender = outputs.at("prob"); return cv::GComputation{cv::GIn(in, rois), cv::GOut(age, gender)}; } }; class AGNetOVCompiled { public: AGNetOVCompiled(ov::CompiledModel &&compiled_model) : m_compiled_model(std::move(compiled_model)), m_infer_request(m_compiled_model.create_infer_request()) { } void operator()(const cv::Mat &in_mat, const cv::Rect &roi, cv::Mat &age_mat, cv::Mat &gender_mat) { // FIXME: W & H could be extracted from model shape // but it's anyway used only for Age Gender model. // (Well won't work in case of reshape) const int W = 62; const int H = 62; cv::Mat resized_roi; cv::resize(in_mat(roi), resized_roi, cv::Size(W, H)); (*this)(resized_roi, age_mat, gender_mat); } void operator()(const cv::Mat &in_mat, const std::vector &rois, std::vector &age_mats, std::vector &gender_mats) { for (size_t i = 0; i < rois.size(); ++i) { (*this)(in_mat, rois[i], age_mats[i], gender_mats[i]); } } void operator()(const cv::Mat &in_mat, cv::Mat &age_mat, cv::Mat &gender_mat) { auto input_tensor = m_infer_request.get_input_tensor(); cv::gapi::ov::util::to_ov(in_mat, input_tensor); m_infer_request.infer(); auto age_tensor = m_infer_request.get_tensor("age_conv3"); age_mat.create(cv::gapi::ov::util::to_ocv(age_tensor.get_shape()), cv::gapi::ov::util::to_ocv(age_tensor.get_element_type())); cv::gapi::ov::util::to_ocv(age_tensor, age_mat); auto gender_tensor = m_infer_request.get_tensor("prob"); gender_mat.create(cv::gapi::ov::util::to_ocv(gender_tensor.get_shape()), cv::gapi::ov::util::to_ocv(gender_tensor.get_element_type())); cv::gapi::ov::util::to_ocv(gender_tensor, gender_mat); } void export_model(const std::string &outpath) { std::ofstream file{outpath, std::ios::out | std::ios::binary}; GAPI_Assert(file.is_open()); m_compiled_model.export_model(file); } private: ov::CompiledModel m_compiled_model; ov::InferRequest m_infer_request; }; struct ImageInputPreproc { void operator()(ov::preprocess::PrePostProcessor &ppp) { ppp.input().tensor().set_layout(ov::Layout("NHWC")) .set_element_type(ov::element::u8) .set_shape({1, size.height, size.width, 3}); ppp.input().model().set_layout(ov::Layout("NCHW")); ppp.input().preprocess().resize(::ov::preprocess::ResizeAlgorithm::RESIZE_LINEAR); } cv::Size size; }; class AGNetOVComp { public: AGNetOVComp(const std::string &xml_path, const std::string &bin_path, const std::string &device) : m_device(device) { m_model = cv::gapi::ov::wrap::getCore() .read_model(xml_path, bin_path); } using PrePostProcessF = std::function; void cfgPrePostProcessing(PrePostProcessF f) { ov::preprocess::PrePostProcessor ppp(m_model); f(ppp); m_model = ppp.build(); } AGNetOVCompiled compile() { auto compiled_model = cv::gapi::ov::wrap::getCore() .compile_model(m_model, m_device); return {std::move(compiled_model)}; } void apply(const cv::Mat &in_mat, cv::Mat &age_mat, cv::Mat &gender_mat) { compile()(in_mat, age_mat, gender_mat); } private: std::string m_device; std::shared_ptr m_model; }; struct BaseAgeGenderOV: public ::testing::Test { BaseAgeGenderOV() { initDLDTDataPath(); xml_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.xml", false); bin_path = findDataFile(SUBDIR + "age-gender-recognition-retail-0013.bin", false); device = "CPU"; blob_path = "age-gender-recognition-retail-0013.blob"; } cv::Mat getRandomImage(const cv::Size &sz) { cv::Mat image(sz, CV_8UC3); cv::randu(image, 0, 255); return image; } cv::Mat getRandomTensor(const std::vector &dims, const int depth) { cv::Mat tensor(dims, depth); cv::randu(tensor, -1, 1); return tensor; } std::string xml_path; std::string bin_path; std::string blob_path; std::string device; }; struct TestAgeGenderOV : public BaseAgeGenderOV { cv::Mat ov_age, ov_gender, gapi_age, gapi_gender; void validate() { normAssert(ov_age, gapi_age, "Test age output" ); normAssert(ov_gender, gapi_gender, "Test gender output"); } }; struct TestAgeGenderListOV : public BaseAgeGenderOV { std::vector ov_age, ov_gender, gapi_age, gapi_gender; std::vector roi_list = { cv::Rect(cv::Point{64, 60}, cv::Size{ 96, 96}), cv::Rect(cv::Point{50, 32}, cv::Size{128, 160}), }; TestAgeGenderListOV() { ov_age.resize(roi_list.size()); ov_gender.resize(roi_list.size()); gapi_age.resize(roi_list.size()); gapi_gender.resize(roi_list.size()); } void validate() { ASSERT_EQ(ov_age.size(), ov_gender.size()); ASSERT_EQ(ov_age.size(), gapi_age.size()); ASSERT_EQ(ov_gender.size(), gapi_gender.size()); for (size_t i = 0; i < ov_age.size(); ++i) { normAssert(ov_age[i], gapi_age[i], "Test age output"); normAssert(ov_gender[i], gapi_gender[i], "Test gender output"); } } }; } // anonymous namespace // TODO: Make all of tests below parmetrized to avoid code duplication TEST_F(TestAgeGenderOV, Infer_Tensor) { const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F); // OpenVINO AGNetOVComp ref(xml_path, bin_path, device); ref.apply(in_mat, ov_age, ov_gender); // G-API auto comp = AGNetTypedComp::create(); auto pp = AGNetTypedComp::params(xml_path, bin_path, device); comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Assert validate(); } TEST_F(TestAgeGenderOV, Infer_Image) { const auto in_mat = getRandomImage({300, 300}); // OpenVINO AGNetOVComp ref(xml_path, bin_path, device); ref.cfgPrePostProcessing(ImageInputPreproc{in_mat.size()}); ref.apply(in_mat, ov_age, ov_gender); // G-API auto comp = AGNetTypedComp::create(); auto pp = AGNetTypedComp::params(xml_path, bin_path, device); comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Assert validate(); } TEST_F(TestAgeGenderOV, InferGeneric_Tensor) { const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F); // OpenVINO AGNetOVComp ref(xml_path, bin_path, device); ref.apply(in_mat, ov_age, ov_gender); // G-API auto comp = AGNetGenComp::create(); auto pp = AGNetGenComp::params(xml_path, bin_path, device); comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Assert validate(); } TEST_F(TestAgeGenderOV, InferGenericImage) { const auto in_mat = getRandomImage({300, 300}); // OpenVINO AGNetOVComp ref(xml_path, bin_path, device); ref.cfgPrePostProcessing(ImageInputPreproc{in_mat.size()}); ref.apply(in_mat, ov_age, ov_gender); // G-API auto comp = AGNetGenComp::create(); auto pp = AGNetGenComp::params(xml_path, bin_path, device); comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Assert validate(); } TEST_F(TestAgeGenderOV, InferGeneric_ImageBlob) { const auto in_mat = getRandomImage({300, 300}); // OpenVINO AGNetOVComp ref(xml_path, bin_path, device); ref.cfgPrePostProcessing(ImageInputPreproc{in_mat.size()}); auto cc_ref = ref.compile(); // NB: Output blob will contain preprocessing inside. cc_ref.export_model(blob_path); cc_ref(in_mat, ov_age, ov_gender); // G-API auto comp = AGNetGenComp::create(); auto pp = AGNetGenComp::params(blob_path, device); comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Assert validate(); } TEST_F(TestAgeGenderOV, InferGeneric_TensorBlob) { const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F); // OpenVINO AGNetOVComp ref(xml_path, bin_path, device); auto cc_ref = ref.compile(); cc_ref.export_model(blob_path); cc_ref(in_mat, ov_age, ov_gender); // G-API auto comp = AGNetGenComp::create(); auto pp = AGNetGenComp::params(blob_path, device); comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Assert validate(); } TEST_F(TestAgeGenderOV, InferGeneric_BothOutputsFP16) { const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F); // OpenVINO AGNetOVComp ref(xml_path, bin_path, device); ref.cfgPrePostProcessing([](ov::preprocess::PrePostProcessor &ppp){ ppp.output(0).tensor().set_element_type(ov::element::f16); ppp.output(1).tensor().set_element_type(ov::element::f16); }); ref.apply(in_mat, ov_age, ov_gender); // G-API auto comp = AGNetGenComp::create(); auto pp = AGNetGenComp::params(xml_path, bin_path, device); pp.cfgOutputTensorPrecision(CV_16F); comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Assert validate(); } TEST_F(TestAgeGenderOV, InferGeneric_OneOutputFP16) { const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F); // OpenVINO const std::string fp16_output_name = "prob"; AGNetOVComp ref(xml_path, bin_path, device); ref.cfgPrePostProcessing([&](ov::preprocess::PrePostProcessor &ppp){ ppp.output(fp16_output_name).tensor().set_element_type(ov::element::f16); }); ref.apply(in_mat, ov_age, ov_gender); // G-API auto comp = AGNetGenComp::create(); auto pp = AGNetGenComp::params(xml_path, bin_path, device); pp.cfgOutputTensorPrecision({{fp16_output_name, CV_16F}}); comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Assert validate(); } TEST_F(TestAgeGenderOV, InferGeneric_ThrowCfgOutputPrecForBlob) { // OpenVINO (Just for blob compilation) AGNetOVComp ref(xml_path, bin_path, device); auto cc_ref = ref.compile(); cc_ref.export_model(blob_path); // G-API auto comp = AGNetGenComp::create(); auto pp = AGNetGenComp::params(blob_path, device); EXPECT_ANY_THROW(pp.cfgOutputTensorPrecision(CV_16F)); } TEST_F(TestAgeGenderOV, InferGeneric_ThrowInvalidConfigIR) { // G-API auto comp = AGNetGenComp::create(); auto pp = AGNetGenComp::params(xml_path, bin_path, device); pp.cfgPluginConfig({{"some_key", "some_value"}}); EXPECT_ANY_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}}, cv::compile_args(cv::gapi::networks(pp)))); } TEST_F(TestAgeGenderOV, InferGeneric_ThrowInvalidConfigBlob) { // OpenVINO (Just for blob compilation) AGNetOVComp ref(xml_path, bin_path, device); auto cc_ref = ref.compile(); cc_ref.export_model(blob_path); // G-API auto comp = AGNetGenComp::create(); auto pp = AGNetGenComp::params(blob_path, device); pp.cfgPluginConfig({{"some_key", "some_value"}}); EXPECT_ANY_THROW(comp.compile(cv::GMatDesc{CV_8U,3,cv::Size{320, 240}}, cv::compile_args(cv::gapi::networks(pp)))); } TEST_F(TestAgeGenderOV, Infer_ThrowInvalidImageLayout) { const auto in_mat = getRandomImage({300, 300}); auto comp = AGNetTypedComp::create(); auto pp = AGNetTypedComp::params(xml_path, bin_path, device); pp.cfgInputTensorLayout("NCHW"); EXPECT_ANY_THROW(comp.compile(cv::descr_of(in_mat), cv::compile_args(cv::gapi::networks(pp)))); } TEST_F(TestAgeGenderOV, Infer_TensorWithPreproc) { const auto in_mat = getRandomTensor({1, 240, 320, 3}, CV_32F); // OpenVINO AGNetOVComp ref(xml_path, bin_path, device); ref.cfgPrePostProcessing([](ov::preprocess::PrePostProcessor &ppp) { auto& input = ppp.input(); input.tensor().set_spatial_static_shape(240, 320) .set_layout("NHWC"); input.preprocess().resize(ov::preprocess::ResizeAlgorithm::RESIZE_LINEAR); }); ref.apply(in_mat, ov_age, ov_gender); // G-API auto comp = AGNetTypedComp::create(); auto pp = AGNetTypedComp::params(xml_path, bin_path, device); pp.cfgResize(cv::INTER_LINEAR) .cfgInputTensorLayout("NHWC"); comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Assert validate(); } TEST_F(TestAgeGenderOV, InferROIGeneric_Image) { const auto in_mat = getRandomImage({300, 300}); cv::Rect roi(cv::Rect(cv::Point{64, 60}, cv::Size{96, 96})); // OpenVINO AGNetOVComp ref(xml_path, bin_path, device); ref.cfgPrePostProcessing([](ov::preprocess::PrePostProcessor &ppp) { ppp.input().tensor().set_element_type(ov::element::u8); ppp.input().tensor().set_layout("NHWC"); }); ref.compile()(in_mat, roi, ov_age, ov_gender); // G-API auto comp = AGNetROIGenComp::create(); auto pp = AGNetROIGenComp::params(xml_path, bin_path, device); comp.apply(cv::gin(in_mat, roi), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Assert validate(); } TEST_F(TestAgeGenderOV, InferROIGeneric_ThrowIncorrectLayout) { const auto in_mat = getRandomImage({300, 300}); cv::Rect roi(cv::Rect(cv::Point{64, 60}, cv::Size{96, 96})); // G-API auto comp = AGNetROIGenComp::create(); auto pp = AGNetROIGenComp::params(xml_path, bin_path, device); pp.cfgInputTensorLayout("NCHW"); EXPECT_ANY_THROW(comp.apply(cv::gin(in_mat, roi), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp)))); } TEST_F(TestAgeGenderOV, InferROIGeneric_ThrowTensorInput) { const auto in_mat = getRandomTensor({1, 3, 62, 62}, CV_32F); cv::Rect roi(cv::Rect(cv::Point{64, 60}, cv::Size{96, 96})); // G-API auto comp = AGNetROIGenComp::create(); auto pp = AGNetROIGenComp::params(xml_path, bin_path, device); EXPECT_ANY_THROW(comp.apply(cv::gin(in_mat, roi), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp)))); } TEST_F(TestAgeGenderOV, InferROIGeneric_ThrowExplicitResize) { const auto in_mat = getRandomImage({300, 300}); cv::Rect roi(cv::Rect(cv::Point{64, 60}, cv::Size{96, 96})); // G-API auto comp = AGNetROIGenComp::create(); auto pp = AGNetROIGenComp::params(xml_path, bin_path, device); pp.cfgResize(cv::INTER_LINEAR); EXPECT_ANY_THROW(comp.apply(cv::gin(in_mat, roi), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp)))); } TEST_F(TestAgeGenderListOV, InferListGeneric_Image) { const auto in_mat = getRandomImage({300, 300}); // OpenVINO AGNetOVComp ref(xml_path, bin_path, device); ref.cfgPrePostProcessing([](ov::preprocess::PrePostProcessor &ppp) { ppp.input().tensor().set_element_type(ov::element::u8); ppp.input().tensor().set_layout("NHWC"); }); ref.compile()(in_mat, roi_list, ov_age, ov_gender); // G-API auto comp = AGNetListGenComp::create(); auto pp = AGNetListGenComp::params(xml_path, bin_path, device); comp.apply(cv::gin(in_mat, roi_list), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Assert validate(); } TEST_F(TestAgeGenderListOV, InferList2Generic_Image) { const auto in_mat = getRandomImage({300, 300}); // OpenVINO AGNetOVComp ref(xml_path, bin_path, device); ref.cfgPrePostProcessing([](ov::preprocess::PrePostProcessor &ppp) { ppp.input().tensor().set_element_type(ov::element::u8); ppp.input().tensor().set_layout("NHWC"); }); ref.compile()(in_mat, roi_list, ov_age, ov_gender); // G-API auto comp = AGNetList2GenComp::create(); auto pp = AGNetList2GenComp::params(xml_path, bin_path, device); comp.apply(cv::gin(in_mat, roi_list), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Assert validate(); } static ov::element::Type toOV(int depth) { switch (depth) { case CV_8U: return ov::element::u8; case CV_32S: return ov::element::i32; case CV_32F: return ov::element::f32; case CV_16F: return ov::element::f16; default: GAPI_Error("OV Backend: Unsupported data type"); } return ov::element::undefined; } struct TestMeanScaleOV : public ::testing::TestWithParam{ G_API_NET(IdentityNet, , "test-identity-net"); static cv::GComputation create() { cv::GMat in; cv::GMat out; out = cv::gapi::infer(in); return cv::GComputation{cv::GIn(in), cv::GOut(out)}; } using Params = cv::gapi::ov::Params; static Params params(const std::string &xml_path, const std::string &bin_path, const std::string &device) { return Params { xml_path, bin_path, device }.cfgInputModelLayout("NHWC") .cfgOutputLayers({ "output" }); } TestMeanScaleOV() { initDLDTDataPath(); m_model_path = findDataFile("gapi/ov/identity_net_100x100.xml"); m_weights_path = findDataFile("gapi/ov/identity_net_100x100.bin"); m_device_id = "CPU"; m_ov_model = cv::gapi::ov::wrap::getCore() .read_model(m_model_path, m_weights_path); auto input_depth = GetParam(); auto input = cv::imread(findDataFile("gapi/gapi_logo.jpg")); input.convertTo(m_in_mat, input_depth); } void addPreprocToOV( std::function f) { auto input_depth = GetParam(); ov::preprocess::PrePostProcessor ppp(m_ov_model); ppp.input().tensor().set_layout(ov::Layout("NHWC")) .set_element_type(toOV(input_depth)) .set_shape({ 1, 100, 100, 3 }); ppp.input().model().set_layout(ov::Layout("NHWC")); f(ppp); m_ov_model = ppp.build(); } void runOV() { auto compiled_model = cv::gapi::ov::wrap::getCore() .compile_model(m_ov_model, m_device_id); auto infer_request = compiled_model.create_infer_request(); auto input_tensor = infer_request.get_input_tensor(); cv::gapi::ov::util::to_ov(m_in_mat, input_tensor); infer_request.infer(); auto out_tensor = infer_request.get_tensor("output"); m_out_mat_ov.create(cv::gapi::ov::util::to_ocv(out_tensor.get_shape()), cv::gapi::ov::util::to_ocv(out_tensor.get_element_type())); cv::gapi::ov::util::to_ocv(out_tensor, m_out_mat_ov); } std::string m_model_path; std::string m_weights_path; std::string m_device_id; std::shared_ptr m_ov_model; cv::Mat m_in_mat; cv::Mat m_out_mat_gapi; cv::Mat m_out_mat_ov; }; TEST_P(TestMeanScaleOV, Mean) { int input_depth = GetParam(); std::vector mean_values{ 220.1779, 218.9857, 217.8986 }; // Run OV reference pipeline: { addPreprocToOV([&](ov::preprocess::PrePostProcessor& ppp) { if (input_depth == CV_8U || input_depth == CV_32S) { ppp.input().preprocess().convert_element_type(ov::element::f32); } ppp.input().preprocess().mean(mean_values); }); runOV(); } // Run G-API GComputation comp = create(); auto pp = params(m_model_path, m_weights_path, m_device_id); pp.cfgMean(mean_values); comp.apply(cv::gin(m_in_mat), cv::gout(m_out_mat_gapi), cv::compile_args(cv::gapi::networks(pp))); // Validate OV results against G-API ones: normAssert(m_out_mat_ov, m_out_mat_gapi, "Test output"); } TEST_P(TestMeanScaleOV, Scale) { int input_depth = GetParam(); std::vector scale_values{ 2., 2., 2. }; // Run OV reference pipeline: { addPreprocToOV([&](ov::preprocess::PrePostProcessor& ppp) { if (input_depth == CV_8U || input_depth == CV_32S) { ppp.input().preprocess().convert_element_type(ov::element::f32); } ppp.input().preprocess().scale(scale_values); }); runOV(); } // Run G-API GComputation comp = create(); auto pp = params(m_model_path, m_weights_path, m_device_id); pp.cfgScale(scale_values); comp.apply(cv::gin(m_in_mat), cv::gout(m_out_mat_gapi), cv::compile_args(cv::gapi::networks(pp))); // Validate OV results against G-API ones: normAssert(m_out_mat_ov, m_out_mat_gapi, "Test output"); } TEST_P(TestMeanScaleOV, MeanAndScale) { int input_depth = GetParam(); std::vector mean_values{ 220.1779, 218.9857, 217.8986 }; std::vector scale_values{ 2., 2., 2. }; // Run OV reference pipeline: { addPreprocToOV([&](ov::preprocess::PrePostProcessor& ppp) { if (input_depth == CV_8U || input_depth == CV_32S) { ppp.input().preprocess().convert_element_type(ov::element::f32); } ppp.input().preprocess().mean(mean_values); ppp.input().preprocess().scale(scale_values); }); runOV(); } // Run G-API GComputation comp = create(); auto pp = params(m_model_path, m_weights_path, m_device_id); pp.cfgMean(mean_values); pp.cfgScale(scale_values); comp.apply(cv::gin(m_in_mat), cv::gout(m_out_mat_gapi), cv::compile_args(cv::gapi::networks(pp))); // Validate OV results against G-API ones: normAssert(m_out_mat_ov, m_out_mat_gapi, "Test output"); } INSTANTIATE_TEST_CASE_P(Instantiation, TestMeanScaleOV, Values(CV_8U, CV_32S, CV_16F, CV_32F)); } // namespace opencv_test #endif // HAVE_INF_ENGINE && INF_ENGINE_RELEASE >= 2022010000