/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Copyright (C) 2014-2015, Itseez Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" namespace cv { namespace hal { #if CV_NEON template struct VSplit2; template struct VSplit3; template struct VSplit4; #define SPLIT2_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \ template<> \ struct name \ { \ void operator()(const data_type* src, data_type* dst0, \ data_type* dst1) const \ { \ reg_type r = load_func(src); \ store_func(dst0, r.val[0]); \ store_func(dst1, r.val[1]); \ } \ } #define SPLIT3_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \ template<> \ struct name \ { \ void operator()(const data_type* src, data_type* dst0, data_type* dst1, \ data_type* dst2) const \ { \ reg_type r = load_func(src); \ store_func(dst0, r.val[0]); \ store_func(dst1, r.val[1]); \ store_func(dst2, r.val[2]); \ } \ } #define SPLIT4_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func) \ template<> \ struct name \ { \ void operator()(const data_type* src, data_type* dst0, data_type* dst1, \ data_type* dst2, data_type* dst3) const \ { \ reg_type r = load_func(src); \ store_func(dst0, r.val[0]); \ store_func(dst1, r.val[1]); \ store_func(dst2, r.val[2]); \ store_func(dst3, r.val[3]); \ } \ } SPLIT2_KERNEL_TEMPLATE(VSplit2, uchar , uint8x16x2_t, vld2q_u8 , vst1q_u8 ); SPLIT2_KERNEL_TEMPLATE(VSplit2, ushort, uint16x8x2_t, vld2q_u16, vst1q_u16); SPLIT2_KERNEL_TEMPLATE(VSplit2, int , int32x4x2_t, vld2q_s32, vst1q_s32); SPLIT2_KERNEL_TEMPLATE(VSplit2, int64 , int64x1x2_t, vld2_s64 , vst1_s64 ); SPLIT3_KERNEL_TEMPLATE(VSplit3, uchar , uint8x16x3_t, vld3q_u8 , vst1q_u8 ); SPLIT3_KERNEL_TEMPLATE(VSplit3, ushort, uint16x8x3_t, vld3q_u16, vst1q_u16); SPLIT3_KERNEL_TEMPLATE(VSplit3, int , int32x4x3_t, vld3q_s32, vst1q_s32); SPLIT3_KERNEL_TEMPLATE(VSplit3, int64 , int64x1x3_t, vld3_s64 , vst1_s64 ); SPLIT4_KERNEL_TEMPLATE(VSplit4, uchar , uint8x16x4_t, vld4q_u8 , vst1q_u8 ); SPLIT4_KERNEL_TEMPLATE(VSplit4, ushort, uint16x8x4_t, vld4q_u16, vst1q_u16); SPLIT4_KERNEL_TEMPLATE(VSplit4, int , int32x4x4_t, vld4q_s32, vst1q_s32); SPLIT4_KERNEL_TEMPLATE(VSplit4, int64 , int64x1x4_t, vld4_s64 , vst1_s64 ); #elif CV_SSE2 template struct VSplit2 { VSplit2() : support(false) { } void operator()(const T *, T *, T *) const { } bool support; }; template struct VSplit3 { VSplit3() : support(false) { } void operator()(const T *, T *, T *, T *) const { } bool support; }; template struct VSplit4 { VSplit4() : support(false) { } void operator()(const T *, T *, T *, T *, T *) const { } bool support; }; #define SPLIT2_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_deinterleave, flavor) \ template <> \ struct VSplit2 \ { \ enum \ { \ ELEMS_IN_VEC = 16 / sizeof(data_type) \ }; \ \ VSplit2() \ { \ support = checkHardwareSupport(CV_CPU_SSE2); \ } \ \ void operator()(const data_type * src, \ data_type * dst0, data_type * dst1) const \ { \ reg_type v_src0 = _mm_loadu_##flavor((cast_type const *)(src)); \ reg_type v_src1 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC)); \ reg_type v_src2 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 2)); \ reg_type v_src3 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 3)); \ \ _mm_deinterleave(v_src0, v_src1, v_src2, v_src3); \ \ _mm_storeu_##flavor((cast_type *)(dst0), v_src0); \ _mm_storeu_##flavor((cast_type *)(dst0 + ELEMS_IN_VEC), v_src1); \ _mm_storeu_##flavor((cast_type *)(dst1), v_src2); \ _mm_storeu_##flavor((cast_type *)(dst1 + ELEMS_IN_VEC), v_src3); \ } \ \ bool support; \ } #define SPLIT3_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_deinterleave, flavor) \ template <> \ struct VSplit3 \ { \ enum \ { \ ELEMS_IN_VEC = 16 / sizeof(data_type) \ }; \ \ VSplit3() \ { \ support = checkHardwareSupport(CV_CPU_SSE2); \ } \ \ void operator()(const data_type * src, \ data_type * dst0, data_type * dst1, data_type * dst2) const \ { \ reg_type v_src0 = _mm_loadu_##flavor((cast_type const *)(src)); \ reg_type v_src1 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC)); \ reg_type v_src2 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 2)); \ reg_type v_src3 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 3)); \ reg_type v_src4 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 4)); \ reg_type v_src5 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 5)); \ \ _mm_deinterleave(v_src0, v_src1, v_src2, \ v_src3, v_src4, v_src5); \ \ _mm_storeu_##flavor((cast_type *)(dst0), v_src0); \ _mm_storeu_##flavor((cast_type *)(dst0 + ELEMS_IN_VEC), v_src1); \ _mm_storeu_##flavor((cast_type *)(dst1), v_src2); \ _mm_storeu_##flavor((cast_type *)(dst1 + ELEMS_IN_VEC), v_src3); \ _mm_storeu_##flavor((cast_type *)(dst2), v_src4); \ _mm_storeu_##flavor((cast_type *)(dst2 + ELEMS_IN_VEC), v_src5); \ } \ \ bool support; \ } #define SPLIT4_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_deinterleave, flavor) \ template <> \ struct VSplit4 \ { \ enum \ { \ ELEMS_IN_VEC = 16 / sizeof(data_type) \ }; \ \ VSplit4() \ { \ support = checkHardwareSupport(CV_CPU_SSE2); \ } \ \ void operator()(const data_type * src, data_type * dst0, data_type * dst1, \ data_type * dst2, data_type * dst3) const \ { \ reg_type v_src0 = _mm_loadu_##flavor((cast_type const *)(src)); \ reg_type v_src1 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC)); \ reg_type v_src2 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 2)); \ reg_type v_src3 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 3)); \ reg_type v_src4 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 4)); \ reg_type v_src5 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 5)); \ reg_type v_src6 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 6)); \ reg_type v_src7 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 7)); \ \ _mm_deinterleave(v_src0, v_src1, v_src2, v_src3, \ v_src4, v_src5, v_src6, v_src7); \ \ _mm_storeu_##flavor((cast_type *)(dst0), v_src0); \ _mm_storeu_##flavor((cast_type *)(dst0 + ELEMS_IN_VEC), v_src1); \ _mm_storeu_##flavor((cast_type *)(dst1), v_src2); \ _mm_storeu_##flavor((cast_type *)(dst1 + ELEMS_IN_VEC), v_src3); \ _mm_storeu_##flavor((cast_type *)(dst2), v_src4); \ _mm_storeu_##flavor((cast_type *)(dst2 + ELEMS_IN_VEC), v_src5); \ _mm_storeu_##flavor((cast_type *)(dst3), v_src6); \ _mm_storeu_##flavor((cast_type *)(dst3 + ELEMS_IN_VEC), v_src7); \ } \ \ bool support; \ } SPLIT2_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_deinterleave_epi8, si128); SPLIT2_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_deinterleave_epi16, si128); SPLIT2_KERNEL_TEMPLATE( int, __m128, float, _mm_deinterleave_ps, ps); SPLIT3_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_deinterleave_epi8, si128); SPLIT3_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_deinterleave_epi16, si128); SPLIT3_KERNEL_TEMPLATE( int, __m128, float, _mm_deinterleave_ps, ps); SPLIT4_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_deinterleave_epi8, si128); SPLIT4_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_deinterleave_epi16, si128); SPLIT4_KERNEL_TEMPLATE( int, __m128, float, _mm_deinterleave_ps, ps); #endif template static void split_( const T* src, T** dst, int len, int cn ) { int k = cn % 4 ? cn % 4 : 4; int i, j; if( k == 1 ) { T* dst0 = dst[0]; if(cn == 1) { memcpy(dst0, src, len * sizeof(T)); } else { for( i = 0, j = 0 ; i < len; i++, j += cn ) dst0[i] = src[j]; } } else if( k == 2 ) { T *dst0 = dst[0], *dst1 = dst[1]; i = j = 0; #if CV_NEON if(cn == 2) { int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T); int inc_j = 2 * inc_i; VSplit2 vsplit; for( ; i < len - inc_i; i += inc_i, j += inc_j) vsplit(src + j, dst0 + i, dst1 + i); } #elif CV_SSE2 if (cn == 2) { int inc_i = 32/sizeof(T); int inc_j = 2 * inc_i; VSplit2 vsplit; if (vsplit.support) { for( ; i <= len - inc_i; i += inc_i, j += inc_j) vsplit(src + j, dst0 + i, dst1 + i); } } #endif for( ; i < len; i++, j += cn ) { dst0[i] = src[j]; dst1[i] = src[j+1]; } } else if( k == 3 ) { T *dst0 = dst[0], *dst1 = dst[1], *dst2 = dst[2]; i = j = 0; #if CV_NEON if(cn == 3) { int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T); int inc_j = 3 * inc_i; VSplit3 vsplit; for( ; i <= len - inc_i; i += inc_i, j += inc_j) vsplit(src + j, dst0 + i, dst1 + i, dst2 + i); } #elif CV_SSE2 if (cn == 3) { int inc_i = 32/sizeof(T); int inc_j = 3 * inc_i; VSplit3 vsplit; if (vsplit.support) { for( ; i <= len - inc_i; i += inc_i, j += inc_j) vsplit(src + j, dst0 + i, dst1 + i, dst2 + i); } } #endif for( ; i < len; i++, j += cn ) { dst0[i] = src[j]; dst1[i] = src[j+1]; dst2[i] = src[j+2]; } } else { T *dst0 = dst[0], *dst1 = dst[1], *dst2 = dst[2], *dst3 = dst[3]; i = j = 0; #if CV_NEON if(cn == 4) { int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T); int inc_j = 4 * inc_i; VSplit4 vsplit; for( ; i <= len - inc_i; i += inc_i, j += inc_j) vsplit(src + j, dst0 + i, dst1 + i, dst2 + i, dst3 + i); } #elif CV_SSE2 if (cn == 4) { int inc_i = 32/sizeof(T); int inc_j = 4 * inc_i; VSplit4 vsplit; if (vsplit.support) { for( ; i <= len - inc_i; i += inc_i, j += inc_j) vsplit(src + j, dst0 + i, dst1 + i, dst2 + i, dst3 + i); } } #endif for( ; i < len; i++, j += cn ) { dst0[i] = src[j]; dst1[i] = src[j+1]; dst2[i] = src[j+2]; dst3[i] = src[j+3]; } } for( ; k < cn; k += 4 ) { T *dst0 = dst[k], *dst1 = dst[k+1], *dst2 = dst[k+2], *dst3 = dst[k+3]; for( i = 0, j = k; i < len; i++, j += cn ) { dst0[i] = src[j]; dst1[i] = src[j+1]; dst2[i] = src[j+2]; dst3[i] = src[j+3]; } } } void split8u(const uchar* src, uchar** dst, int len, int cn ) { CALL_HAL(split8u, cv_hal_split8u, src,dst, len, cn) split_(src, dst, len, cn); } void split16u(const ushort* src, ushort** dst, int len, int cn ) { CALL_HAL(split16u, cv_hal_split16u, src,dst, len, cn) split_(src, dst, len, cn); } void split32s(const int* src, int** dst, int len, int cn ) { CALL_HAL(split32s, cv_hal_split32s, src,dst, len, cn) split_(src, dst, len, cn); } void split64s(const int64* src, int64** dst, int len, int cn ) { CALL_HAL(split64s, cv_hal_split64s, src,dst, len, cn) split_(src, dst, len, cn); } }}