#include <opencv2/dnn.hpp> #include <opencv2/dnn/shape_utils.hpp> #include <opencv2/imgproc.hpp> #include <opencv2/highgui.hpp> using namespace cv; using namespace cv::dnn; #include <fstream> #include <iostream> #include <cstdlib> using namespace std; const size_t inWidth = 300; const size_t inHeight = 300; const float WHRatio = inWidth / (float)inHeight; const float inScaleFactor = 0.007843f; const float meanVal = 127.5; const char* classNames[] = {"background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"}; const char* about = "This sample uses Single-Shot Detector " "(https://arxiv.org/abs/1512.02325)" "to detect objects on image.\n" ".caffemodel model's file is avaliable here: " "https://github.com/chuanqi305/MobileNet-SSD\n"; const char* params = "{ help | false | print usage }" "{ proto | MobileNetSSD_deploy.prototxt | model configuration }" "{ model | MobileNetSSD_deploy.caffemodel | model weights }" "{ video | | video for detection }" "{ out | | path to output video file}" "{ min_confidence | 0.2 | min confidence }"; int main(int argc, char** argv) { cv::CommandLineParser parser(argc, argv, params); if (parser.get<bool>("help")) { cout << about << endl; parser.printMessage(); return 0; } String modelConfiguration = parser.get<string>("proto"); String modelBinary = parser.get<string>("model"); //! [Initialize network] dnn::Net net = readNetFromCaffe(modelConfiguration, modelBinary); //! [Initialize network] VideoCapture cap(parser.get<String>("video")); if(!cap.isOpened()) // check if we succeeded { cap = VideoCapture(0); if(!cap.isOpened()) { cout << "Couldn't find camera" << endl; return -1; } } Size inVideoSize = Size((int) cap.get(CV_CAP_PROP_FRAME_WIDTH), //Acquire input size (int) cap.get(CV_CAP_PROP_FRAME_HEIGHT)); Size cropSize; if (inVideoSize.width / (float)inVideoSize.height > WHRatio) { cropSize = Size(static_cast<int>(inVideoSize.height * WHRatio), inVideoSize.height); } else { cropSize = Size(inVideoSize.width, static_cast<int>(inVideoSize.width / WHRatio)); } Rect crop(Point((inVideoSize.width - cropSize.width) / 2, (inVideoSize.height - cropSize.height) / 2), cropSize); VideoWriter outputVideo; outputVideo.open(parser.get<String>("out") , static_cast<int>(cap.get(CV_CAP_PROP_FOURCC)), cap.get(CV_CAP_PROP_FPS), cropSize, true); for(;;) { Mat frame; cap >> frame; // get a new frame from camera //! [Prepare blob] Mat inputBlob = blobFromImage(frame, inScaleFactor, Size(inWidth, inHeight), meanVal, false); //Convert Mat to batch of images //! [Prepare blob] //! [Set input blob] net.setInput(inputBlob, "data"); //set the network input //! [Set input blob] //! [Make forward pass] Mat detection = net.forward("detection_out"); //compute output //! [Make forward pass] std::vector<double> layersTimings; double freq = getTickFrequency() / 1000; double time = net.getPerfProfile(layersTimings) / freq; cout << "Inference time, ms: " << time << endl; Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>()); frame = frame(crop); float confidenceThreshold = parser.get<float>("min_confidence"); for(int i = 0; i < detectionMat.rows; i++) { float confidence = detectionMat.at<float>(i, 2); if(confidence > confidenceThreshold) { size_t objectClass = (size_t)(detectionMat.at<float>(i, 1)); int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols); int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows); int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols); int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows); ostringstream ss; ss << confidence; String conf(ss.str()); Rect object((int)xLeftBottom, (int)yLeftBottom, (int)(xRightTop - xLeftBottom), (int)(yRightTop - yLeftBottom)); rectangle(frame, object, Scalar(0, 255, 0)); String label = String(classNames[objectClass]) + ": " + conf; int baseLine = 0; Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height), Size(labelSize.width, labelSize.height + baseLine)), Scalar(255, 255, 255), CV_FILLED); putText(frame, label, Point(xLeftBottom, yLeftBottom), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0,0,0)); } } if (outputVideo.isOpened()) outputVideo << frame; imshow("detections", frame); if (waitKey(1) >= 0) break; } return 0; } // main