/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_WARPERS_INL_HPP__ #define __OPENCV_WARPERS_INL_HPP__ #include "warpers.hpp" // Make your IDE see declarations template cv::Point WarperBase

::warp(const cv::Mat &src, float focal, const cv::Mat &R, cv::Mat &dst, int interp_mode, int border_mode) { src_size_ = src.size(); projector_.size = src.size(); projector_.focal = focal; projector_.setTransformation(R); cv::Point dst_tl, dst_br; detectResultRoi(dst_tl, dst_br); cv::Mat xmap(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F); cv::Mat ymap(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F); float x, y; for (int v = dst_tl.y; v <= dst_br.y; ++v) { for (int u = dst_tl.x; u <= dst_br.x; ++u) { projector_.mapBackward(static_cast(u), static_cast(v), x, y); xmap.at(v - dst_tl.y, u - dst_tl.x) = x; ymap.at(v - dst_tl.y, u - dst_tl.x) = y; } } dst.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, src.type()); remap(src, dst, xmap, ymap, interp_mode, border_mode); return dst_tl; } template void WarperBase

::detectResultRoi(cv::Point &dst_tl, cv::Point &dst_br) { float tl_uf = std::numeric_limits::max(); float tl_vf = std::numeric_limits::max(); float br_uf = -std::numeric_limits::max(); float br_vf = -std::numeric_limits::max(); float u, v; for (int y = 0; y < src_size_.height; ++y) { for (int x = 0; x < src_size_.width; ++x) { projector_.mapForward(static_cast(x), static_cast(y), u, v); tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); } } dst_tl.x = static_cast(tl_uf); dst_tl.y = static_cast(tl_vf); dst_br.x = static_cast(br_uf); dst_br.y = static_cast(br_vf); } template void WarperBase

::detectResultRoiByBorder(cv::Point &dst_tl, cv::Point &dst_br) { float tl_uf = std::numeric_limits::max(); float tl_vf = std::numeric_limits::max(); float br_uf = -std::numeric_limits::max(); float br_vf = -std::numeric_limits::max(); float u, v; for (float x = 0; x < src_size_.width; ++x) { projector_.mapForward(static_cast(x), 0, u, v); tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); projector_.mapForward(static_cast(x), static_cast(src_size_.height - 1), u, v); tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); } for (int y = 0; y < src_size_.height; ++y) { projector_.mapForward(0, static_cast(y), u, v); tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); projector_.mapForward(static_cast(src_size_.width - 1), static_cast(y), u, v); tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v); br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v); } dst_tl.x = static_cast(tl_uf); dst_tl.y = static_cast(tl_vf); dst_br.x = static_cast(br_uf); dst_br.y = static_cast(br_vf); } inline void PlaneProjector::mapForward(float x, float y, float &u, float &v) { x -= size.width * 0.5f; y -= size.height * 0.5f; float x_ = r[0] * x + r[1] * y + r[2] * focal; float y_ = r[3] * x + r[4] * y + r[5] * focal; float z_ = r[6] * x + r[7] * y + r[8] * focal; u = scale * x_ / z_ * plane_dist; v = scale * y_ / z_ * plane_dist; } inline void PlaneProjector::mapBackward(float u, float v, float &x, float &y) { float x_ = u / scale; float y_ = v / scale; float z; x = rinv[0] * x_ + rinv[1] * y_ + rinv[2] * plane_dist; y = rinv[3] * x_ + rinv[4] * y_ + rinv[5] * plane_dist; z = rinv[6] * x_ + rinv[7] * y_ + rinv[8] * plane_dist; x = focal * x / z + size.width * 0.5f; y = focal * y / z + size.height * 0.5f; } inline void SphericalProjector::mapForward(float x, float y, float &u, float &v) { x -= size.width * 0.5f; y -= size.height * 0.5f; float x_ = r[0] * x + r[1] * y + r[2] * focal; float y_ = r[3] * x + r[4] * y + r[5] * focal; float z_ = r[6] * x + r[7] * y + r[8] * focal; u = scale * atan2f(x_, z_); v = scale * (static_cast(CV_PI) - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_))); } inline void SphericalProjector::mapBackward(float u, float v, float &x, float &y) { float sinv = sinf(static_cast(CV_PI) - v / scale); float x_ = sinv * sinf(u / scale); float y_ = cosf(static_cast(CV_PI) - v / scale); float z_ = sinv * cosf(u / scale); float z; x = rinv[0] * x_ + rinv[1] * y_ + rinv[2] * z_; y = rinv[3] * x_ + rinv[4] * y_ + rinv[5] * z_; z = rinv[6] * x_ + rinv[7] * y_ + rinv[8] * z_; x = focal * x / z + size.width * 0.5f; y = focal * y / z + size.height * 0.5f; } inline void CylindricalProjector::mapForward(float x, float y, float &u, float &v) { x -= size.width * 0.5f; y -= size.height * 0.5f; float x_ = r[0] * x + r[1] * y + r[2] * focal; float y_ = r[3] * x + r[4] * y + r[5] * focal; float z_ = r[6] * x + r[7] * y + r[8] * focal; u = scale * atan2f(x_, z_); v = scale * y_ / sqrtf(x_ * x_ + z_ * z_); } inline void CylindricalProjector::mapBackward(float u, float v, float &x, float &y) { float x_ = sinf(u / scale); float y_ = v / scale; float z_ = cosf(u / scale); float z; x = rinv[0] * x_ + rinv[1] * y_ + rinv[2] * z_; y = rinv[3] * x_ + rinv[4] * y_ + rinv[5] * z_; z = rinv[6] * x_ + rinv[7] * y_ + rinv[8] * z_; x = focal * x / z + size.width * 0.5f; y = focal * y / z + size.height * 0.5f; } #endif // __OPENCV_WARPERS_INL_HPP__