// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2018, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "precomp.hpp" #include "opencv2/objdetect.hpp" // #include "opencv2/calib3d.hpp" #include #include #include namespace cv { using std::vector; class QRDecode { public: void init(Mat src, double eps_vertical_ = 0.2, double eps_horizontal_ = 0.1); void binarization(); bool localization(); bool transformation(); Mat getBinBarcode() { return bin_barcode; } Mat getStraightBarcode() { return straight_barcode; } vector getTransformationPoints() { return transformation_points; } protected: bool computeTransformationPoints(); vector searchVerticalLines(); vector separateHorizontalLines(vector list_lines); void fixationPoints(vector &local_point); Point2f intersectionLines(Point2f a1, Point2f a2, Point2f b1, Point2f b2); vector getQuadrilateral(vector angle_list); bool testBypassRoute(vector hull, int start, int finish); inline double getCosVectors(Point2f a, Point2f b, Point2f c); Mat barcode, bin_barcode, straight_barcode; vector localization_points, transformation_points; double eps_vertical, eps_horizontal, coeff_expansion; }; void QRDecode::init(Mat src, double eps_vertical_, double eps_horizontal_) { double min_side = std::min(src.size().width, src.size().height); if (min_side < 512.0) { coeff_expansion = 512.0 / min_side; int width = static_cast(src.size().width * coeff_expansion); int height = static_cast(src.size().height * coeff_expansion); Size new_size(width, height); resize(src, barcode, new_size); } else { coeff_expansion = 1.0; barcode = src; } eps_vertical = eps_vertical_; eps_horizontal = eps_horizontal_; } void QRDecode::binarization() { Mat filter_barcode; GaussianBlur(barcode, filter_barcode, Size(3, 3), 0); threshold(filter_barcode, bin_barcode, 100, 255, THRESH_BINARY + THRESH_OTSU); } vector QRDecode::searchVerticalLines() { vector result; int temp_length = 0; uint8_t next_pixel, future_pixel; vector test_lines; for (int x = 0; x < bin_barcode.rows; x++) { for (int y = 0; y < bin_barcode.cols; y++) { if (bin_barcode.at(x, y) > 0) { continue; } // --------------- Search vertical lines --------------- // test_lines.clear(); future_pixel = 255; for (int i = x; i < bin_barcode.rows - 1; i++) { next_pixel = bin_barcode.at(i + 1, y); temp_length++; if (next_pixel == future_pixel) { future_pixel = 255 - future_pixel; test_lines.push_back(temp_length); temp_length = 0; if (test_lines.size() == 5) { break; } } } // --------------- Compute vertical lines --------------- // if (test_lines.size() == 5) { double length = 0.0, weight = 0.0; for (size_t i = 0; i < test_lines.size(); i++) { length += test_lines[i]; } CV_Assert(length > 0); for (size_t i = 0; i < test_lines.size(); i++) { if (i == 2) { weight += fabs((test_lines[i] / length) - 3.0/7.0); } else { weight += fabs((test_lines[i] / length) - 1.0/7.0); } } if (weight < eps_vertical) { Vec3d line; line[0] = x; line[1] = y, line[2] = length; result.push_back(line); } } } } return result; } vector QRDecode::separateHorizontalLines(vector list_lines) { vector result; int temp_length = 0; uint8_t next_pixel, future_pixel; vector test_lines; for (size_t pnt = 0; pnt < list_lines.size(); pnt++) { int x = static_cast(list_lines[pnt][0] + list_lines[pnt][2] * 0.5); int y = static_cast(list_lines[pnt][1]); // --------------- Search horizontal up-lines --------------- // test_lines.clear(); future_pixel = 255; for (int j = y; j < bin_barcode.cols - 1; j++) { next_pixel = bin_barcode.at(x, j + 1); temp_length++; if (next_pixel == future_pixel) { future_pixel = 255 - future_pixel; test_lines.push_back(temp_length); temp_length = 0; if (test_lines.size() == 3) { break; } } } // --------------- Search horizontal down-lines --------------- // future_pixel = 255; for (int j = y; j >= 1; j--) { next_pixel = bin_barcode.at(x, j - 1); temp_length++; if (next_pixel == future_pixel) { future_pixel = 255 - future_pixel; test_lines.push_back(temp_length); temp_length = 0; if (test_lines.size() == 6) { break; } } } // --------------- Compute horizontal lines --------------- // if (test_lines.size() == 6) { double length = 0.0, weight = 0.0; for (size_t i = 0; i < test_lines.size(); i++) { length += test_lines[i]; } CV_Assert(length > 0); for (size_t i = 0; i < test_lines.size(); i++) { if (i % 3 == 0) { weight += fabs((test_lines[i] / length) - 3.0/14.0); } else { weight += fabs((test_lines[i] / length) - 1.0/ 7.0); } } if(weight < eps_horizontal) { result.push_back(list_lines[pnt]); } } } vector point2f_result; for (size_t i = 0; i < result.size(); i++) { point2f_result.push_back( Point2f(static_cast(result[i][1]), static_cast(result[i][0] + result[i][2] * 0.5))); } return point2f_result; } void QRDecode::fixationPoints(vector &local_point) { double cos_angles[3], norm_triangl[3]; norm_triangl[0] = norm(local_point[1] - local_point[2]); norm_triangl[1] = norm(local_point[0] - local_point[2]); norm_triangl[2] = norm(local_point[1] - local_point[0]); cos_angles[0] = (pow(norm_triangl[1], 2) + pow(norm_triangl[2], 2) - pow(norm_triangl[0], 2)) / (2 * norm_triangl[1] * norm_triangl[2]); cos_angles[1] = (pow(norm_triangl[0], 2) + pow(norm_triangl[2], 2) - pow(norm_triangl[1], 2)) / (2 * norm_triangl[0] * norm_triangl[2]); cos_angles[2] = (pow(norm_triangl[0], 2) + pow(norm_triangl[1], 2) - pow(norm_triangl[2], 2)) / (2 * norm_triangl[0] * norm_triangl[1]); size_t i_min_cos = (cos_angles[0] < cos_angles[1] && cos_angles[0] < cos_angles[2]) ? 0 : (cos_angles[1] < cos_angles[0] && cos_angles[1] < cos_angles[2]) ? 1 : 2; std::swap(local_point[0], local_point[i_min_cos]); Point2f rpt = local_point[0], bpt = local_point[1], gpt = local_point[2]; Matx22f m(rpt.x - bpt.x, rpt.y - bpt.y, gpt.x - rpt.x, gpt.y - rpt.y); if( determinant(m) > 0 ) { std::swap(local_point[1], local_point[2]); } } bool QRDecode::localization() { Point2f begin, end; vector list_lines_x = searchVerticalLines(); if( list_lines_x.empty() ) { return false; } vector list_lines_y = separateHorizontalLines(list_lines_x); if( list_lines_y.empty() ) { return false; } vector centers; Mat labels; if (list_lines_y.size() < 3) { return false; } kmeans(list_lines_y, 3, labels, TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 10, 1.0), 3, KMEANS_PP_CENTERS, localization_points); fixationPoints(localization_points); if (localization_points.size() != 3) { return false; } if (coeff_expansion > 1.0) { int width = static_cast(bin_barcode.size().width / coeff_expansion); int height = static_cast(bin_barcode.size().height / coeff_expansion); Size new_size(width, height); Mat intermediate; resize(bin_barcode, intermediate, new_size); bin_barcode = intermediate.clone(); for (size_t i = 0; i < localization_points.size(); i++) { localization_points[i] /= coeff_expansion; } } for (size_t i = 0; i < localization_points.size(); i++) { for (size_t j = i + 1; j < localization_points.size(); j++) { if (norm(localization_points[i] - localization_points[j]) < 10) { return false; } } } return true; } bool QRDecode::computeTransformationPoints() { if (localization_points.size() != 3) { return false; } vector locations, non_zero_elem[3], newHull; vector new_non_zero_elem[3]; for (size_t i = 0; i < 3; i++) { Mat mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1); uint8_t next_pixel, future_pixel = 255; int count_test_lines = 0, index = static_cast(localization_points[i].x); for (; index < bin_barcode.cols - 1; index++) { next_pixel = bin_barcode.at( static_cast(localization_points[i].y), index + 1); if (next_pixel == future_pixel) { future_pixel = 255 - future_pixel; count_test_lines++; if (count_test_lines == 2) { floodFill(bin_barcode, mask, Point(index + 1, static_cast(localization_points[i].y)), 255, 0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY); break; } } } Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1)); findNonZero(mask_roi, non_zero_elem[i]); newHull.insert(newHull.end(), non_zero_elem[i].begin(), non_zero_elem[i].end()); } convexHull(Mat(newHull), locations); for (size_t i = 0; i < locations.size(); i++) { for (size_t j = 0; j < 3; j++) { for (size_t k = 0; k < non_zero_elem[j].size(); k++) { if (locations[i] == non_zero_elem[j][k]) { new_non_zero_elem[j].push_back(locations[i]); } } } } double pentagon_diag_norm = -1; Point2f down_left_edge_point, up_right_edge_point, up_left_edge_point; for (size_t i = 0; i < new_non_zero_elem[1].size(); i++) { for (size_t j = 0; j < new_non_zero_elem[2].size(); j++) { double temp_norm = norm(new_non_zero_elem[1][i] - new_non_zero_elem[2][j]); if (temp_norm > pentagon_diag_norm) { down_left_edge_point = new_non_zero_elem[1][i]; up_right_edge_point = new_non_zero_elem[2][j]; pentagon_diag_norm = temp_norm; } } } if (down_left_edge_point == Point2f(0, 0) || up_right_edge_point == Point2f(0, 0)) { return false; } double max_area = -1; up_left_edge_point = new_non_zero_elem[0][0]; for (size_t i = 0; i < new_non_zero_elem[0].size(); i++) { vector list_edge_points; list_edge_points.push_back(new_non_zero_elem[0][i]); list_edge_points.push_back(down_left_edge_point); list_edge_points.push_back(up_right_edge_point); double temp_area = contourArea(list_edge_points); if (max_area < temp_area) { up_left_edge_point = new_non_zero_elem[0][i]; max_area = temp_area; } } Point2f down_max_delta_point, up_max_delta_point; double norm_down_max_delta = -1, norm_up_max_delta = -1; for (size_t i = 0; i < new_non_zero_elem[1].size(); i++) { double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[1][i]) + norm(down_left_edge_point - new_non_zero_elem[1][i]); if (norm_down_max_delta < temp_norm_delta) { down_max_delta_point = new_non_zero_elem[1][i]; norm_down_max_delta = temp_norm_delta; } } for (size_t i = 0; i < new_non_zero_elem[2].size(); i++) { double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[2][i]) + norm(up_right_edge_point - new_non_zero_elem[2][i]); if (norm_up_max_delta < temp_norm_delta) { up_max_delta_point = new_non_zero_elem[2][i]; norm_up_max_delta = temp_norm_delta; } } transformation_points.push_back(down_left_edge_point); transformation_points.push_back(up_left_edge_point); transformation_points.push_back(up_right_edge_point); transformation_points.push_back( intersectionLines(down_left_edge_point, down_max_delta_point, up_right_edge_point, up_max_delta_point)); vector quadrilateral = getQuadrilateral(transformation_points); transformation_points = quadrilateral; return true; } Point2f QRDecode::intersectionLines(Point2f a1, Point2f a2, Point2f b1, Point2f b2) { Point2f result_square_angle( ((a1.x * a2.y - a1.y * a2.x) * (b1.x - b2.x) - (b1.x * b2.y - b1.y * b2.x) * (a1.x - a2.x)) / ((a1.x - a2.x) * (b1.y - b2.y) - (a1.y - a2.y) * (b1.x - b2.x)), ((a1.x * a2.y - a1.y * a2.x) * (b1.y - b2.y) - (b1.x * b2.y - b1.y * b2.x) * (a1.y - a2.y)) / ((a1.x - a2.x) * (b1.y - b2.y) - (a1.y - a2.y) * (b1.x - b2.x)) ); return result_square_angle; } // test function (if true then ------> else <------ ) bool QRDecode::testBypassRoute(vector hull, int start, int finish) { int index_hull = start, next_index_hull, hull_size = (int)hull.size(); double test_length[2] = { 0.0, 0.0 }; do { next_index_hull = index_hull + 1; if (next_index_hull == hull_size) { next_index_hull = 0; } test_length[0] += norm(hull[index_hull] - hull[next_index_hull]); index_hull = next_index_hull; } while(index_hull != finish); index_hull = start; do { next_index_hull = index_hull - 1; if (next_index_hull == -1) { next_index_hull = hull_size - 1; } test_length[1] += norm(hull[index_hull] - hull[next_index_hull]); index_hull = next_index_hull; } while(index_hull != finish); if (test_length[0] < test_length[1]) { return true; } else { return false; } } vector QRDecode::getQuadrilateral(vector angle_list) { size_t angle_size = angle_list.size(); uint8_t value, mask_value; Mat mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1); Mat fill_bin_barcode = bin_barcode.clone(); for (size_t i = 0; i < angle_size; i++) { LineIterator line_iter(bin_barcode, angle_list[ i % angle_size], angle_list[(i + 1) % angle_size]); for(int j = 0; j < line_iter.count; j++, ++line_iter) { value = bin_barcode.at(line_iter.pos()); mask_value = mask.at(line_iter.pos() + Point(1, 1)); if (value == 0 && mask_value == 0) { floodFill(fill_bin_barcode, mask, line_iter.pos(), 255, 0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY); } } } vector locations; Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1)); cv::findNonZero(mask_roi, locations); for (size_t i = 0; i < angle_list.size(); i++) { int x = static_cast(angle_list[i].x); int y = static_cast(angle_list[i].y); locations.push_back(Point(x, y)); } vector integer_hull; convexHull(Mat(locations), integer_hull); int hull_size = (int)integer_hull.size(); vector hull(hull_size); for (int i = 0; i < hull_size; i++) { float x = static_cast(integer_hull[i].x); float y = static_cast(integer_hull[i].y); hull[i] = Point2f(x, y); } const double experimental_area = contourArea(hull); vector result_hull_point(angle_size); double min_norm; for (size_t i = 0; i < angle_size; i++) { min_norm = std::numeric_limits::max(); Point closest_pnt; for (int j = 0; j < hull_size; j++) { double temp_norm = norm(hull[j] - angle_list[i]); if (min_norm > temp_norm) { min_norm = temp_norm; closest_pnt = hull[j]; } } result_hull_point[i] = closest_pnt; } int start_line[2] = { 0, 0 }, finish_line[2] = { 0, 0 }, unstable_pnt = 0; for (int i = 0; i < hull_size; i++) { if (result_hull_point[2] == hull[i]) { start_line[0] = i; } if (result_hull_point[1] == hull[i]) { finish_line[0] = start_line[1] = i; } if (result_hull_point[0] == hull[i]) { finish_line[1] = i; } if (result_hull_point[3] == hull[i]) { unstable_pnt = i; } } int index_hull, extra_index_hull, next_index_hull, extra_next_index_hull; Point result_side_begin[4], result_side_end[4]; bool bypass_orientation = testBypassRoute(hull, start_line[0], finish_line[0]); bool extra_bypass_orientation; min_norm = std::numeric_limits::max(); index_hull = start_line[0]; do { if (bypass_orientation) { next_index_hull = index_hull + 1; } else { next_index_hull = index_hull - 1; } if (next_index_hull == hull_size) { next_index_hull = 0; } if (next_index_hull == -1) { next_index_hull = hull_size - 1; } Point angle_closest_pnt = norm(hull[index_hull] - angle_list[1]) > norm(hull[index_hull] - angle_list[2]) ? angle_list[2] : angle_list[1]; Point intrsc_line_hull = intersectionLines(hull[index_hull], hull[next_index_hull], angle_list[1], angle_list[2]); double temp_norm = getCosVectors(hull[index_hull], intrsc_line_hull, angle_closest_pnt); if (min_norm > temp_norm && norm(hull[index_hull] - hull[next_index_hull]) > norm(angle_list[1] - angle_list[2]) * 0.1) { min_norm = temp_norm; result_side_begin[0] = hull[index_hull]; result_side_end[0] = hull[next_index_hull]; } index_hull = next_index_hull; } while(index_hull != finish_line[0]); if (min_norm == std::numeric_limits::max()) { result_side_begin[0] = angle_list[1]; result_side_end[0] = angle_list[2]; } min_norm = std::numeric_limits::max(); index_hull = start_line[1]; bypass_orientation = testBypassRoute(hull, start_line[1], finish_line[1]); do { if (bypass_orientation) { next_index_hull = index_hull + 1; } else { next_index_hull = index_hull - 1; } if (next_index_hull == hull_size) { next_index_hull = 0; } if (next_index_hull == -1) { next_index_hull = hull_size - 1; } Point angle_closest_pnt = norm(hull[index_hull] - angle_list[0]) > norm(hull[index_hull] - angle_list[1]) ? angle_list[1] : angle_list[0]; Point intrsc_line_hull = intersectionLines(hull[index_hull], hull[next_index_hull], angle_list[0], angle_list[1]); double temp_norm = getCosVectors(hull[index_hull], intrsc_line_hull, angle_closest_pnt); if (min_norm > temp_norm && norm(hull[index_hull] - hull[next_index_hull]) > norm(angle_list[0] - angle_list[1]) * 0.05) { min_norm = temp_norm; result_side_begin[1] = hull[index_hull]; result_side_end[1] = hull[next_index_hull]; } index_hull = next_index_hull; } while(index_hull != finish_line[1]); if (min_norm == std::numeric_limits::max()) { result_side_begin[1] = angle_list[0]; result_side_end[1] = angle_list[1]; } bypass_orientation = testBypassRoute(hull, start_line[0], unstable_pnt); extra_bypass_orientation = testBypassRoute(hull, finish_line[1], unstable_pnt); vector result_angle_list(4), test_result_angle_list(4); double min_diff_area = std::numeric_limits::max(), test_diff_area; index_hull = start_line[0]; double standart_norm = std::max( norm(result_side_begin[0] - result_side_end[0]), norm(result_side_begin[1] - result_side_end[1])); do { if (bypass_orientation) { next_index_hull = index_hull + 1; } else { next_index_hull = index_hull - 1; } if (next_index_hull == hull_size) { next_index_hull = 0; } if (next_index_hull == -1) { next_index_hull = hull_size - 1; } if (norm(hull[index_hull] - hull[next_index_hull]) < standart_norm * 0.1) { index_hull = next_index_hull; continue; } extra_index_hull = finish_line[1]; do { if (extra_bypass_orientation) { extra_next_index_hull = extra_index_hull + 1; } else { extra_next_index_hull = extra_index_hull - 1; } if (extra_next_index_hull == hull_size) { extra_next_index_hull = 0; } if (extra_next_index_hull == -1) { extra_next_index_hull = hull_size - 1; } if (norm(hull[extra_index_hull] - hull[extra_next_index_hull]) < standart_norm * 0.1) { extra_index_hull = extra_next_index_hull; continue; } test_result_angle_list[0] = intersectionLines(result_side_begin[0], result_side_end[0], result_side_begin[1], result_side_end[1]); test_result_angle_list[1] = intersectionLines(result_side_begin[1], result_side_end[1], hull[extra_index_hull], hull[extra_next_index_hull]); test_result_angle_list[2] = intersectionLines(hull[extra_index_hull], hull[extra_next_index_hull], hull[index_hull], hull[next_index_hull]); test_result_angle_list[3] = intersectionLines(hull[index_hull], hull[next_index_hull], result_side_begin[0], result_side_end[0]); test_diff_area = fabs(contourArea(test_result_angle_list) - experimental_area); if (min_diff_area > test_diff_area) { min_diff_area = test_diff_area; for (size_t i = 0; i < test_result_angle_list.size(); i++) { result_angle_list[i] = test_result_angle_list[i]; } } extra_index_hull = extra_next_index_hull; } while(extra_index_hull != unstable_pnt); index_hull = next_index_hull; } while(index_hull != unstable_pnt); return result_angle_list; } // / | b // / | // / | // a/ | c inline double QRDecode::getCosVectors(Point2f a, Point2f b, Point2f c) { return ((a - b).x * (c - b).x + (a - b).y * (c - b).y) / (norm(a - b) * norm(c - b)); } bool QRDecode::transformation() { if(!computeTransformationPoints()) { return false; } double max_length_norm = -1; size_t transform_size = transformation_points.size(); for (size_t i = 0; i < transform_size; i++) { double len_norm = norm(transformation_points[i % transform_size] - transformation_points[(i + 1) % transform_size]); max_length_norm = std::max(max_length_norm, len_norm); } Point2f transformation_points_[] = { transformation_points[0], transformation_points[1], transformation_points[2], transformation_points[3] }; Point2f perspective_points[] = { Point2f(0.f, 0.f), Point2f(0.f, (float)max_length_norm), Point2f((float)max_length_norm, (float)max_length_norm), Point2f((float)max_length_norm, 0.f) }; Mat H = getPerspectiveTransform(transformation_points_, perspective_points); warpPerspective(bin_barcode, straight_barcode, H, Size(static_cast(max_length_norm), static_cast(max_length_norm))); return true; } struct QRCodeDetector::Impl { public: Impl() { epsX = 0.2; epsY = 0.1; } ~Impl() {} double epsX, epsY; }; QRCodeDetector::QRCodeDetector() : p(new Impl) {} QRCodeDetector::~QRCodeDetector() {} void QRCodeDetector::setEpsX(double epsX) { p->epsX = epsX; } void QRCodeDetector::setEpsY(double epsY) { p->epsY = epsY; } bool QRCodeDetector::detect(InputArray in, OutputArray points) const { Mat inarr = in.getMat(); CV_Assert(!inarr.empty()); CV_Assert(inarr.type() == CV_8UC1); QRDecode qrdec; qrdec.init(inarr, p->epsX, p->epsY); qrdec.binarization(); if (!qrdec.localization()) { return false; } if (!qrdec.transformation()) { return false; } vector pnts2f = qrdec.getTransformationPoints(); Mat(pnts2f).convertTo(points, points.fixedType() ? points.type() : CV_32FC2); return true; } CV_EXPORTS bool detectQRCode(InputArray in, std::vector &points, double eps_x, double eps_y) { QRCodeDetector qrdetector; qrdetector.setEpsX(eps_x); qrdetector.setEpsY(eps_y); return qrdetector.detect(in, points); } }