/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #include "opencl_kernels.hpp" /****************************************************************************************\ Basic Morphological Operations: Erosion & Dilation \****************************************************************************************/ namespace cv { template struct MinOp { typedef T type1; typedef T type2; typedef T rtype; T operator ()(const T a, const T b) const { return std::min(a, b); } }; template struct MaxOp { typedef T type1; typedef T type2; typedef T rtype; T operator ()(const T a, const T b) const { return std::max(a, b); } }; #undef CV_MIN_8U #undef CV_MAX_8U #define CV_MIN_8U(a,b) ((a) - CV_FAST_CAST_8U((a) - (b))) #define CV_MAX_8U(a,b) ((a) + CV_FAST_CAST_8U((b) - (a))) template<> inline uchar MinOp::operator ()(const uchar a, const uchar b) const { return CV_MIN_8U(a, b); } template<> inline uchar MaxOp::operator ()(const uchar a, const uchar b) const { return CV_MAX_8U(a, b); } struct MorphRowNoVec { MorphRowNoVec(int, int) {} int operator()(const uchar*, uchar*, int, int) const { return 0; } }; struct MorphColumnNoVec { MorphColumnNoVec(int, int) {} int operator()(const uchar**, uchar*, int, int, int) const { return 0; } }; struct MorphNoVec { int operator()(uchar**, int, uchar*, int) const { return 0; } }; #if CV_SSE2 template struct MorphRowIVec { enum { ESZ = VecUpdate::ESZ }; MorphRowIVec(int _ksize, int _anchor) : ksize(_ksize), anchor(_anchor) {} int operator()(const uchar* src, uchar* dst, int width, int cn) const { if( !checkHardwareSupport(CV_CPU_SSE2) ) return 0; cn *= ESZ; int i, k, _ksize = ksize*cn; width = (width & -4)*cn; VecUpdate updateOp; for( i = 0; i <= width - 16; i += 16 ) { __m128i s = _mm_loadu_si128((const __m128i*)(src + i)); for( k = cn; k < _ksize; k += cn ) { __m128i x = _mm_loadu_si128((const __m128i*)(src + i + k)); s = updateOp(s, x); } _mm_storeu_si128((__m128i*)(dst + i), s); } for( ; i < width; i += 4 ) { __m128i s = _mm_cvtsi32_si128(*(const int*)(src + i)); for( k = cn; k < _ksize; k += cn ) { __m128i x = _mm_cvtsi32_si128(*(const int*)(src + i + k)); s = updateOp(s, x); } *(int*)(dst + i) = _mm_cvtsi128_si32(s); } return i/ESZ; } int ksize, anchor; }; template struct MorphRowFVec { MorphRowFVec(int _ksize, int _anchor) : ksize(_ksize), anchor(_anchor) {} int operator()(const uchar* src, uchar* dst, int width, int cn) const { if( !checkHardwareSupport(CV_CPU_SSE) ) return 0; int i, k, _ksize = ksize*cn; width = (width & -4)*cn; VecUpdate updateOp; for( i = 0; i < width; i += 4 ) { __m128 s = _mm_loadu_ps((const float*)src + i); for( k = cn; k < _ksize; k += cn ) { __m128 x = _mm_loadu_ps((const float*)src + i + k); s = updateOp(s, x); } _mm_storeu_ps((float*)dst + i, s); } return i; } int ksize, anchor; }; template struct MorphColumnIVec { enum { ESZ = VecUpdate::ESZ }; MorphColumnIVec(int _ksize, int _anchor) : ksize(_ksize), anchor(_anchor) {} int operator()(const uchar** src, uchar* dst, int dststep, int count, int width) const { if( !checkHardwareSupport(CV_CPU_SSE2) ) return 0; int i = 0, k, _ksize = ksize; width *= ESZ; VecUpdate updateOp; for( i = 0; i < count + ksize - 1; i++ ) CV_Assert( ((size_t)src[i] & 15) == 0 ); for( ; _ksize > 1 && count > 1; count -= 2, dst += dststep*2, src += 2 ) { for( i = 0; i <= width - 32; i += 32 ) { const uchar* sptr = src[1] + i; __m128i s0 = _mm_load_si128((const __m128i*)sptr); __m128i s1 = _mm_load_si128((const __m128i*)(sptr + 16)); __m128i x0, x1; for( k = 2; k < _ksize; k++ ) { sptr = src[k] + i; x0 = _mm_load_si128((const __m128i*)sptr); x1 = _mm_load_si128((const __m128i*)(sptr + 16)); s0 = updateOp(s0, x0); s1 = updateOp(s1, x1); } sptr = src[0] + i; x0 = _mm_load_si128((const __m128i*)sptr); x1 = _mm_load_si128((const __m128i*)(sptr + 16)); _mm_storeu_si128((__m128i*)(dst + i), updateOp(s0, x0)); _mm_storeu_si128((__m128i*)(dst + i + 16), updateOp(s1, x1)); sptr = src[k] + i; x0 = _mm_load_si128((const __m128i*)sptr); x1 = _mm_load_si128((const __m128i*)(sptr + 16)); _mm_storeu_si128((__m128i*)(dst + dststep + i), updateOp(s0, x0)); _mm_storeu_si128((__m128i*)(dst + dststep + i + 16), updateOp(s1, x1)); } for( ; i <= width - 8; i += 8 ) { __m128i s0 = _mm_loadl_epi64((const __m128i*)(src[1] + i)), x0; for( k = 2; k < _ksize; k++ ) { x0 = _mm_loadl_epi64((const __m128i*)(src[k] + i)); s0 = updateOp(s0, x0); } x0 = _mm_loadl_epi64((const __m128i*)(src[0] + i)); _mm_storel_epi64((__m128i*)(dst + i), updateOp(s0, x0)); x0 = _mm_loadl_epi64((const __m128i*)(src[k] + i)); _mm_storel_epi64((__m128i*)(dst + dststep + i), updateOp(s0, x0)); } } for( ; count > 0; count--, dst += dststep, src++ ) { for( i = 0; i <= width - 32; i += 32 ) { const uchar* sptr = src[0] + i; __m128i s0 = _mm_load_si128((const __m128i*)sptr); __m128i s1 = _mm_load_si128((const __m128i*)(sptr + 16)); __m128i x0, x1; for( k = 1; k < _ksize; k++ ) { sptr = src[k] + i; x0 = _mm_load_si128((const __m128i*)sptr); x1 = _mm_load_si128((const __m128i*)(sptr + 16)); s0 = updateOp(s0, x0); s1 = updateOp(s1, x1); } _mm_storeu_si128((__m128i*)(dst + i), s0); _mm_storeu_si128((__m128i*)(dst + i + 16), s1); } for( ; i <= width - 8; i += 8 ) { __m128i s0 = _mm_loadl_epi64((const __m128i*)(src[0] + i)), x0; for( k = 1; k < _ksize; k++ ) { x0 = _mm_loadl_epi64((const __m128i*)(src[k] + i)); s0 = updateOp(s0, x0); } _mm_storel_epi64((__m128i*)(dst + i), s0); } } return i/ESZ; } int ksize, anchor; }; template struct MorphColumnFVec { MorphColumnFVec(int _ksize, int _anchor) : ksize(_ksize), anchor(_anchor) {} int operator()(const uchar** _src, uchar* _dst, int dststep, int count, int width) const { if( !checkHardwareSupport(CV_CPU_SSE) ) return 0; int i = 0, k, _ksize = ksize; VecUpdate updateOp; for( i = 0; i < count + ksize - 1; i++ ) CV_Assert( ((size_t)_src[i] & 15) == 0 ); const float** src = (const float**)_src; float* dst = (float*)_dst; dststep /= sizeof(dst[0]); for( ; _ksize > 1 && count > 1; count -= 2, dst += dststep*2, src += 2 ) { for( i = 0; i <= width - 16; i += 16 ) { const float* sptr = src[1] + i; __m128 s0 = _mm_load_ps(sptr); __m128 s1 = _mm_load_ps(sptr + 4); __m128 s2 = _mm_load_ps(sptr + 8); __m128 s3 = _mm_load_ps(sptr + 12); __m128 x0, x1, x2, x3; for( k = 2; k < _ksize; k++ ) { sptr = src[k] + i; x0 = _mm_load_ps(sptr); x1 = _mm_load_ps(sptr + 4); s0 = updateOp(s0, x0); s1 = updateOp(s1, x1); x2 = _mm_load_ps(sptr + 8); x3 = _mm_load_ps(sptr + 12); s2 = updateOp(s2, x2); s3 = updateOp(s3, x3); } sptr = src[0] + i; x0 = _mm_load_ps(sptr); x1 = _mm_load_ps(sptr + 4); x2 = _mm_load_ps(sptr + 8); x3 = _mm_load_ps(sptr + 12); _mm_storeu_ps(dst + i, updateOp(s0, x0)); _mm_storeu_ps(dst + i + 4, updateOp(s1, x1)); _mm_storeu_ps(dst + i + 8, updateOp(s2, x2)); _mm_storeu_ps(dst + i + 12, updateOp(s3, x3)); sptr = src[k] + i; x0 = _mm_load_ps(sptr); x1 = _mm_load_ps(sptr + 4); x2 = _mm_load_ps(sptr + 8); x3 = _mm_load_ps(sptr + 12); _mm_storeu_ps(dst + dststep + i, updateOp(s0, x0)); _mm_storeu_ps(dst + dststep + i + 4, updateOp(s1, x1)); _mm_storeu_ps(dst + dststep + i + 8, updateOp(s2, x2)); _mm_storeu_ps(dst + dststep + i + 12, updateOp(s3, x3)); } for( ; i <= width - 4; i += 4 ) { __m128 s0 = _mm_load_ps(src[1] + i), x0; for( k = 2; k < _ksize; k++ ) { x0 = _mm_load_ps(src[k] + i); s0 = updateOp(s0, x0); } x0 = _mm_load_ps(src[0] + i); _mm_storeu_ps(dst + i, updateOp(s0, x0)); x0 = _mm_load_ps(src[k] + i); _mm_storeu_ps(dst + dststep + i, updateOp(s0, x0)); } } for( ; count > 0; count--, dst += dststep, src++ ) { for( i = 0; i <= width - 16; i += 16 ) { const float* sptr = src[0] + i; __m128 s0 = _mm_load_ps(sptr); __m128 s1 = _mm_load_ps(sptr + 4); __m128 s2 = _mm_load_ps(sptr + 8); __m128 s3 = _mm_load_ps(sptr + 12); __m128 x0, x1, x2, x3; for( k = 1; k < _ksize; k++ ) { sptr = src[k] + i; x0 = _mm_load_ps(sptr); x1 = _mm_load_ps(sptr + 4); s0 = updateOp(s0, x0); s1 = updateOp(s1, x1); x2 = _mm_load_ps(sptr + 8); x3 = _mm_load_ps(sptr + 12); s2 = updateOp(s2, x2); s3 = updateOp(s3, x3); } _mm_storeu_ps(dst + i, s0); _mm_storeu_ps(dst + i + 4, s1); _mm_storeu_ps(dst + i + 8, s2); _mm_storeu_ps(dst + i + 12, s3); } for( i = 0; i <= width - 4; i += 4 ) { __m128 s0 = _mm_load_ps(src[0] + i), x0; for( k = 1; k < _ksize; k++ ) { x0 = _mm_load_ps(src[k] + i); s0 = updateOp(s0, x0); } _mm_storeu_ps(dst + i, s0); } } return i; } int ksize, anchor; }; template struct MorphIVec { enum { ESZ = VecUpdate::ESZ }; int operator()(uchar** src, int nz, uchar* dst, int width) const { if( !checkHardwareSupport(CV_CPU_SSE2) ) return 0; int i, k; width *= ESZ; VecUpdate updateOp; for( i = 0; i <= width - 32; i += 32 ) { const uchar* sptr = src[0] + i; __m128i s0 = _mm_loadu_si128((const __m128i*)sptr); __m128i s1 = _mm_loadu_si128((const __m128i*)(sptr + 16)); __m128i x0, x1; for( k = 1; k < nz; k++ ) { sptr = src[k] + i; x0 = _mm_loadu_si128((const __m128i*)sptr); x1 = _mm_loadu_si128((const __m128i*)(sptr + 16)); s0 = updateOp(s0, x0); s1 = updateOp(s1, x1); } _mm_storeu_si128((__m128i*)(dst + i), s0); _mm_storeu_si128((__m128i*)(dst + i + 16), s1); } for( ; i <= width - 8; i += 8 ) { __m128i s0 = _mm_loadl_epi64((const __m128i*)(src[0] + i)), x0; for( k = 1; k < nz; k++ ) { x0 = _mm_loadl_epi64((const __m128i*)(src[k] + i)); s0 = updateOp(s0, x0); } _mm_storel_epi64((__m128i*)(dst + i), s0); } return i/ESZ; } }; template struct MorphFVec { int operator()(uchar** _src, int nz, uchar* _dst, int width) const { if( !checkHardwareSupport(CV_CPU_SSE) ) return 0; const float** src = (const float**)_src; float* dst = (float*)_dst; int i, k; VecUpdate updateOp; for( i = 0; i <= width - 16; i += 16 ) { const float* sptr = src[0] + i; __m128 s0 = _mm_loadu_ps(sptr); __m128 s1 = _mm_loadu_ps(sptr + 4); __m128 s2 = _mm_loadu_ps(sptr + 8); __m128 s3 = _mm_loadu_ps(sptr + 12); __m128 x0, x1, x2, x3; for( k = 1; k < nz; k++ ) { sptr = src[k] + i; x0 = _mm_loadu_ps(sptr); x1 = _mm_loadu_ps(sptr + 4); x2 = _mm_loadu_ps(sptr + 8); x3 = _mm_loadu_ps(sptr + 12); s0 = updateOp(s0, x0); s1 = updateOp(s1, x1); s2 = updateOp(s2, x2); s3 = updateOp(s3, x3); } _mm_storeu_ps(dst + i, s0); _mm_storeu_ps(dst + i + 4, s1); _mm_storeu_ps(dst + i + 8, s2); _mm_storeu_ps(dst + i + 12, s3); } for( ; i <= width - 4; i += 4 ) { __m128 s0 = _mm_loadu_ps(src[0] + i), x0; for( k = 1; k < nz; k++ ) { x0 = _mm_loadu_ps(src[k] + i); s0 = updateOp(s0, x0); } _mm_storeu_ps(dst + i, s0); } for( ; i < width; i++ ) { __m128 s0 = _mm_load_ss(src[0] + i), x0; for( k = 1; k < nz; k++ ) { x0 = _mm_load_ss(src[k] + i); s0 = updateOp(s0, x0); } _mm_store_ss(dst + i, s0); } return i; } }; struct VMin8u { enum { ESZ = 1 }; __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_min_epu8(a,b); } }; struct VMax8u { enum { ESZ = 1 }; __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_max_epu8(a,b); } }; struct VMin16u { enum { ESZ = 2 }; __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_subs_epu16(a,_mm_subs_epu16(a,b)); } }; struct VMax16u { enum { ESZ = 2 }; __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_adds_epu16(_mm_subs_epu16(a,b), b); } }; struct VMin16s { enum { ESZ = 2 }; __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_min_epi16(a, b); } }; struct VMax16s { enum { ESZ = 2 }; __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_max_epi16(a, b); } }; struct VMin32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_min_ps(a,b); }}; struct VMax32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_max_ps(a,b); }}; typedef MorphRowIVec ErodeRowVec8u; typedef MorphRowIVec DilateRowVec8u; typedef MorphRowIVec ErodeRowVec16u; typedef MorphRowIVec DilateRowVec16u; typedef MorphRowIVec ErodeRowVec16s; typedef MorphRowIVec DilateRowVec16s; typedef MorphRowFVec ErodeRowVec32f; typedef MorphRowFVec DilateRowVec32f; typedef MorphColumnIVec ErodeColumnVec8u; typedef MorphColumnIVec DilateColumnVec8u; typedef MorphColumnIVec ErodeColumnVec16u; typedef MorphColumnIVec DilateColumnVec16u; typedef MorphColumnIVec ErodeColumnVec16s; typedef MorphColumnIVec DilateColumnVec16s; typedef MorphColumnFVec ErodeColumnVec32f; typedef MorphColumnFVec DilateColumnVec32f; typedef MorphIVec ErodeVec8u; typedef MorphIVec DilateVec8u; typedef MorphIVec ErodeVec16u; typedef MorphIVec DilateVec16u; typedef MorphIVec ErodeVec16s; typedef MorphIVec DilateVec16s; typedef MorphFVec ErodeVec32f; typedef MorphFVec DilateVec32f; #else #ifdef HAVE_TEGRA_OPTIMIZATION using tegra::ErodeRowVec8u; using tegra::DilateRowVec8u; using tegra::ErodeColumnVec8u; using tegra::DilateColumnVec8u; #else typedef MorphRowNoVec ErodeRowVec8u; typedef MorphRowNoVec DilateRowVec8u; typedef MorphColumnNoVec ErodeColumnVec8u; typedef MorphColumnNoVec DilateColumnVec8u; #endif typedef MorphRowNoVec ErodeRowVec16u; typedef MorphRowNoVec DilateRowVec16u; typedef MorphRowNoVec ErodeRowVec16s; typedef MorphRowNoVec DilateRowVec16s; typedef MorphRowNoVec ErodeRowVec32f; typedef MorphRowNoVec DilateRowVec32f; typedef MorphColumnNoVec ErodeColumnVec16u; typedef MorphColumnNoVec DilateColumnVec16u; typedef MorphColumnNoVec ErodeColumnVec16s; typedef MorphColumnNoVec DilateColumnVec16s; typedef MorphColumnNoVec ErodeColumnVec32f; typedef MorphColumnNoVec DilateColumnVec32f; typedef MorphNoVec ErodeVec8u; typedef MorphNoVec DilateVec8u; typedef MorphNoVec ErodeVec16u; typedef MorphNoVec DilateVec16u; typedef MorphNoVec ErodeVec16s; typedef MorphNoVec DilateVec16s; typedef MorphNoVec ErodeVec32f; typedef MorphNoVec DilateVec32f; #endif typedef MorphRowNoVec ErodeRowVec64f; typedef MorphRowNoVec DilateRowVec64f; typedef MorphColumnNoVec ErodeColumnVec64f; typedef MorphColumnNoVec DilateColumnVec64f; typedef MorphNoVec ErodeVec64f; typedef MorphNoVec DilateVec64f; template struct MorphRowFilter : public BaseRowFilter { typedef typename Op::rtype T; MorphRowFilter( int _ksize, int _anchor ) : vecOp(_ksize, _anchor) { ksize = _ksize; anchor = _anchor; } void operator()(const uchar* src, uchar* dst, int width, int cn) { int i, j, k, _ksize = ksize*cn; const T* S = (const T*)src; Op op; T* D = (T*)dst; if( _ksize == cn ) { for( i = 0; i < width*cn; i++ ) D[i] = S[i]; return; } int i0 = vecOp(src, dst, width, cn); width *= cn; for( k = 0; k < cn; k++, S++, D++ ) { for( i = i0; i <= width - cn*2; i += cn*2 ) { const T* s = S + i; T m = s[cn]; for( j = cn*2; j < _ksize; j += cn ) m = op(m, s[j]); D[i] = op(m, s[0]); D[i+cn] = op(m, s[j]); } for( ; i < width; i += cn ) { const T* s = S + i; T m = s[0]; for( j = cn; j < _ksize; j += cn ) m = op(m, s[j]); D[i] = m; } } } VecOp vecOp; }; template struct MorphColumnFilter : public BaseColumnFilter { typedef typename Op::rtype T; MorphColumnFilter( int _ksize, int _anchor ) : vecOp(_ksize, _anchor) { ksize = _ksize; anchor = _anchor; } void operator()(const uchar** _src, uchar* dst, int dststep, int count, int width) { int i, k, _ksize = ksize; const T** src = (const T**)_src; T* D = (T*)dst; Op op; int i0 = vecOp(_src, dst, dststep, count, width); dststep /= sizeof(D[0]); for( ; _ksize > 1 && count > 1; count -= 2, D += dststep*2, src += 2 ) { i = i0; #if CV_ENABLE_UNROLLED for( ; i <= width - 4; i += 4 ) { const T* sptr = src[1] + i; T s0 = sptr[0], s1 = sptr[1], s2 = sptr[2], s3 = sptr[3]; for( k = 2; k < _ksize; k++ ) { sptr = src[k] + i; s0 = op(s0, sptr[0]); s1 = op(s1, sptr[1]); s2 = op(s2, sptr[2]); s3 = op(s3, sptr[3]); } sptr = src[0] + i; D[i] = op(s0, sptr[0]); D[i+1] = op(s1, sptr[1]); D[i+2] = op(s2, sptr[2]); D[i+3] = op(s3, sptr[3]); sptr = src[k] + i; D[i+dststep] = op(s0, sptr[0]); D[i+dststep+1] = op(s1, sptr[1]); D[i+dststep+2] = op(s2, sptr[2]); D[i+dststep+3] = op(s3, sptr[3]); } #endif for( ; i < width; i++ ) { T s0 = src[1][i]; for( k = 2; k < _ksize; k++ ) s0 = op(s0, src[k][i]); D[i] = op(s0, src[0][i]); D[i+dststep] = op(s0, src[k][i]); } } for( ; count > 0; count--, D += dststep, src++ ) { i = i0; #if CV_ENABLE_UNROLLED for( ; i <= width - 4; i += 4 ) { const T* sptr = src[0] + i; T s0 = sptr[0], s1 = sptr[1], s2 = sptr[2], s3 = sptr[3]; for( k = 1; k < _ksize; k++ ) { sptr = src[k] + i; s0 = op(s0, sptr[0]); s1 = op(s1, sptr[1]); s2 = op(s2, sptr[2]); s3 = op(s3, sptr[3]); } D[i] = s0; D[i+1] = s1; D[i+2] = s2; D[i+3] = s3; } #endif for( ; i < width; i++ ) { T s0 = src[0][i]; for( k = 1; k < _ksize; k++ ) s0 = op(s0, src[k][i]); D[i] = s0; } } } VecOp vecOp; }; template struct MorphFilter : BaseFilter { typedef typename Op::rtype T; MorphFilter( const Mat& _kernel, Point _anchor ) { anchor = _anchor; ksize = _kernel.size(); CV_Assert( _kernel.type() == CV_8U ); std::vector coeffs; // we do not really the values of non-zero // kernel elements, just their locations preprocess2DKernel( _kernel, coords, coeffs ); ptrs.resize( coords.size() ); } void operator()(const uchar** src, uchar* dst, int dststep, int count, int width, int cn) { const Point* pt = &coords[0]; const T** kp = (const T**)&ptrs[0]; int i, k, nz = (int)coords.size(); Op op; width *= cn; for( ; count > 0; count--, dst += dststep, src++ ) { T* D = (T*)dst; for( k = 0; k < nz; k++ ) kp[k] = (const T*)src[pt[k].y] + pt[k].x*cn; i = vecOp(&ptrs[0], nz, dst, width); #if CV_ENABLE_UNROLLED for( ; i <= width - 4; i += 4 ) { const T* sptr = kp[0] + i; T s0 = sptr[0], s1 = sptr[1], s2 = sptr[2], s3 = sptr[3]; for( k = 1; k < nz; k++ ) { sptr = kp[k] + i; s0 = op(s0, sptr[0]); s1 = op(s1, sptr[1]); s2 = op(s2, sptr[2]); s3 = op(s3, sptr[3]); } D[i] = s0; D[i+1] = s1; D[i+2] = s2; D[i+3] = s3; } #endif for( ; i < width; i++ ) { T s0 = kp[0][i]; for( k = 1; k < nz; k++ ) s0 = op(s0, kp[k][i]); D[i] = s0; } } } std::vector coords; std::vector ptrs; VecOp vecOp; }; } /////////////////////////////////// External Interface ///////////////////////////////////// cv::Ptr cv::getMorphologyRowFilter(int op, int type, int ksize, int anchor) { int depth = CV_MAT_DEPTH(type); if( anchor < 0 ) anchor = ksize/2; CV_Assert( op == MORPH_ERODE || op == MORPH_DILATE ); if( op == MORPH_ERODE ) { if( depth == CV_8U ) return makePtr, ErodeRowVec8u> >(ksize, anchor); if( depth == CV_16U ) return makePtr, ErodeRowVec16u> >(ksize, anchor); if( depth == CV_16S ) return makePtr, ErodeRowVec16s> >(ksize, anchor); if( depth == CV_32F ) return makePtr, ErodeRowVec32f> >(ksize, anchor); if( depth == CV_64F ) return makePtr, ErodeRowVec64f> >(ksize, anchor); } else { if( depth == CV_8U ) return makePtr, DilateRowVec8u> >(ksize, anchor); if( depth == CV_16U ) return makePtr, DilateRowVec16u> >(ksize, anchor); if( depth == CV_16S ) return makePtr, DilateRowVec16s> >(ksize, anchor); if( depth == CV_32F ) return makePtr, DilateRowVec32f> >(ksize, anchor); if( depth == CV_64F ) return makePtr, DilateRowVec64f> >(ksize, anchor); } CV_Error_( CV_StsNotImplemented, ("Unsupported data type (=%d)", type)); return Ptr(); } cv::Ptr cv::getMorphologyColumnFilter(int op, int type, int ksize, int anchor) { int depth = CV_MAT_DEPTH(type); if( anchor < 0 ) anchor = ksize/2; CV_Assert( op == MORPH_ERODE || op == MORPH_DILATE ); if( op == MORPH_ERODE ) { if( depth == CV_8U ) return makePtr, ErodeColumnVec8u> >(ksize, anchor); if( depth == CV_16U ) return makePtr, ErodeColumnVec16u> >(ksize, anchor); if( depth == CV_16S ) return makePtr, ErodeColumnVec16s> >(ksize, anchor); if( depth == CV_32F ) return makePtr, ErodeColumnVec32f> >(ksize, anchor); if( depth == CV_64F ) return makePtr, ErodeColumnVec64f> >(ksize, anchor); } else { if( depth == CV_8U ) return makePtr, DilateColumnVec8u> >(ksize, anchor); if( depth == CV_16U ) return makePtr, DilateColumnVec16u> >(ksize, anchor); if( depth == CV_16S ) return makePtr, DilateColumnVec16s> >(ksize, anchor); if( depth == CV_32F ) return makePtr, DilateColumnVec32f> >(ksize, anchor); if( depth == CV_64F ) return makePtr, DilateColumnVec64f> >(ksize, anchor); } CV_Error_( CV_StsNotImplemented, ("Unsupported data type (=%d)", type)); return Ptr(); } cv::Ptr cv::getMorphologyFilter(int op, int type, InputArray _kernel, Point anchor) { Mat kernel = _kernel.getMat(); int depth = CV_MAT_DEPTH(type); anchor = normalizeAnchor(anchor, kernel.size()); CV_Assert( op == MORPH_ERODE || op == MORPH_DILATE ); if( op == MORPH_ERODE ) { if( depth == CV_8U ) return makePtr, ErodeVec8u> >(kernel, anchor); if( depth == CV_16U ) return makePtr, ErodeVec16u> >(kernel, anchor); if( depth == CV_16S ) return makePtr, ErodeVec16s> >(kernel, anchor); if( depth == CV_32F ) return makePtr, ErodeVec32f> >(kernel, anchor); if( depth == CV_64F ) return makePtr, ErodeVec64f> >(kernel, anchor); } else { if( depth == CV_8U ) return makePtr, DilateVec8u> >(kernel, anchor); if( depth == CV_16U ) return makePtr, DilateVec16u> >(kernel, anchor); if( depth == CV_16S ) return makePtr, DilateVec16s> >(kernel, anchor); if( depth == CV_32F ) return makePtr, DilateVec32f> >(kernel, anchor); if( depth == CV_64F ) return makePtr, DilateVec64f> >(kernel, anchor); } CV_Error_( CV_StsNotImplemented, ("Unsupported data type (=%d)", type)); return Ptr(); } cv::Ptr cv::createMorphologyFilter( int op, int type, InputArray _kernel, Point anchor, int _rowBorderType, int _columnBorderType, const Scalar& _borderValue ) { Mat kernel = _kernel.getMat(); anchor = normalizeAnchor(anchor, kernel.size()); Ptr rowFilter; Ptr columnFilter; Ptr filter2D; if( countNonZero(kernel) == kernel.rows*kernel.cols ) { // rectangular structuring element rowFilter = getMorphologyRowFilter(op, type, kernel.cols, anchor.x); columnFilter = getMorphologyColumnFilter(op, type, kernel.rows, anchor.y); } else filter2D = getMorphologyFilter(op, type, kernel, anchor); Scalar borderValue = _borderValue; if( (_rowBorderType == BORDER_CONSTANT || _columnBorderType == BORDER_CONSTANT) && borderValue == morphologyDefaultBorderValue() ) { int depth = CV_MAT_DEPTH(type); CV_Assert( depth == CV_8U || depth == CV_16U || depth == CV_16S || depth == CV_32F || depth == CV_64F ); if( op == MORPH_ERODE ) borderValue = Scalar::all( depth == CV_8U ? (double)UCHAR_MAX : depth == CV_16U ? (double)USHRT_MAX : depth == CV_16S ? (double)SHRT_MAX : depth == CV_32F ? (double)FLT_MAX : DBL_MAX); else borderValue = Scalar::all( depth == CV_8U || depth == CV_16U ? 0. : depth == CV_16S ? (double)SHRT_MIN : depth == CV_32F ? (double)-FLT_MAX : -DBL_MAX); } return makePtr(filter2D, rowFilter, columnFilter, type, type, type, _rowBorderType, _columnBorderType, borderValue ); } cv::Mat cv::getStructuringElement(int shape, Size ksize, Point anchor) { int i, j; int r = 0, c = 0; double inv_r2 = 0; CV_Assert( shape == MORPH_RECT || shape == MORPH_CROSS || shape == MORPH_ELLIPSE ); anchor = normalizeAnchor(anchor, ksize); if( ksize == Size(1,1) ) shape = MORPH_RECT; if( shape == MORPH_ELLIPSE ) { r = ksize.height/2; c = ksize.width/2; inv_r2 = r ? 1./((double)r*r) : 0; } Mat elem(ksize, CV_8U); for( i = 0; i < ksize.height; i++ ) { uchar* ptr = elem.data + i*elem.step; int j1 = 0, j2 = 0; if( shape == MORPH_RECT || (shape == MORPH_CROSS && i == anchor.y) ) j2 = ksize.width; else if( shape == MORPH_CROSS ) j1 = anchor.x, j2 = j1 + 1; else { int dy = i - r; if( std::abs(dy) <= r ) { int dx = saturate_cast(c*std::sqrt((r*r - dy*dy)*inv_r2)); j1 = std::max( c - dx, 0 ); j2 = std::min( c + dx + 1, ksize.width ); } } for( j = 0; j < j1; j++ ) ptr[j] = 0; for( ; j < j2; j++ ) ptr[j] = 1; for( ; j < ksize.width; j++ ) ptr[j] = 0; } return elem; } namespace cv { class MorphologyRunner : public ParallelLoopBody { public: MorphologyRunner(Mat _src, Mat _dst, int _nStripes, int _iterations, int _op, Mat _kernel, Point _anchor, int _rowBorderType, int _columnBorderType, const Scalar& _borderValue) : borderValue(_borderValue) { src = _src; dst = _dst; nStripes = _nStripes; iterations = _iterations; op = _op; kernel = _kernel; anchor = _anchor; rowBorderType = _rowBorderType; columnBorderType = _columnBorderType; } void operator () ( const Range& range ) const { int row0 = std::min(cvRound(range.start * src.rows / nStripes), src.rows); int row1 = std::min(cvRound(range.end * src.rows / nStripes), src.rows); /*if(0) printf("Size = (%d, %d), range[%d,%d), row0 = %d, row1 = %d\n", src.rows, src.cols, range.start, range.end, row0, row1);*/ Mat srcStripe = src.rowRange(row0, row1); Mat dstStripe = dst.rowRange(row0, row1); Ptr f = createMorphologyFilter(op, src.type(), kernel, anchor, rowBorderType, columnBorderType, borderValue ); f->apply( srcStripe, dstStripe ); for( int i = 1; i < iterations; i++ ) f->apply( dstStripe, dstStripe ); } private: Mat src; Mat dst; int nStripes; int iterations; int op; Mat kernel; Point anchor; int rowBorderType; int columnBorderType; Scalar borderValue; }; #if IPP_VERSION_X100 >= 801 static bool IPPMorphReplicate(int op, const Mat &src, Mat &dst, const Mat &kernel, const Size& ksize, const Point &anchor, bool rectKernel) { int type = src.type(); const Mat* _src = &src; Mat temp; if (src.data == dst.data) { src.copyTo(temp); _src = &temp; } IppiSize roiSize = {src.cols, src.rows}; IppiSize kernelSize = {ksize.width, ksize.height}; if (!rectKernel) { #if 1 if (((kernel.cols - 1) / 2 != anchor.x) || ((kernel.rows - 1) / 2 != anchor.y)) return false; #define IPP_MORPH_CASE(cvtype, flavor, data_type) \ case cvtype: \ {\ int specSize = 0, bufferSize = 0;\ if (0 > ippiMorphologyBorderGetSize_##flavor(roiSize.width, kernelSize, &specSize, &bufferSize))\ return false;\ IppiMorphState *pSpec = (IppiMorphState*)ippMalloc(specSize);\ Ipp8u *pBuffer = (Ipp8u*)ippMalloc(bufferSize);\ if (0 > ippiMorphologyBorderInit_##flavor(roiSize.width, kernel.data, kernelSize, pSpec, pBuffer))\ {\ ippFree(pBuffer);\ ippFree(pSpec);\ return false;\ }\ bool ok = false;\ if (op == MORPH_ERODE)\ ok = (0 <= ippiErodeBorder_##flavor((Ipp##data_type *)_src->data, (int)_src->step[0], (Ipp##data_type *)dst.data, (int)dst.step[0],\ roiSize, ippBorderRepl, 0, pSpec, pBuffer));\ else\ ok = (0 <= ippiDilateBorder_##flavor((Ipp##data_type *)_src->data, (int)_src->step[0], (Ipp##data_type *)dst.data, (int)dst.step[0],\ roiSize, ippBorderRepl, 0, pSpec, pBuffer));\ ippFree(pBuffer);\ ippFree(pSpec);\ return ok;\ }\ break; #else IppiPoint point = {anchor.x, anchor.y}; // this is case, which can be used with the anchor not in center of the kernel, but // ippiMorphologyBorderGetSize_, ippiErodeBorderReplicate_ and ippiDilateBorderReplicate_ are deprecated. #define IPP_MORPH_CASE(cvtype, flavor, data_type) \ case cvtype: \ {\ int specSize = 0;\ int bufferSize = 0;\ if (0 > ippiMorphologyGetSize_##flavor( roiSize.width, kernel.data kernelSize, &specSize))\ return false;\ bool ok = false;\ IppiMorphState* pState = (IppiMorphState*)ippMalloc(specSize);\ if (ippiMorphologyInit_##flavor(roiSize.width, kernel.data, kernelSize, point, pState) >= 0)\ {\ if (op == MORPH_ERODE)\ ok = ippiErodeBorderReplicate_##flavor((Ipp##data_type *)_src->data, (int)_src->step[0],\ (Ipp##data_type *)dst.data, (int)dst.step[0],\ roiSize, ippBorderRepl, pState ) >= 0;\ else\ ok = ippiDilateBorderReplicate_##flavor((Ipp##data_type *)_src->data, (int)_src->step[0],\ (Ipp##data_type *)dst.data, (int)dst.step[0],\ roiSize, ippBorderRepl, pState ) >= 0;\ }\ ippFree(pState);\ return ok;\ }\ break; #endif switch (type) { IPP_MORPH_CASE(CV_8UC1, 8u_C1R, 8u); IPP_MORPH_CASE(CV_8UC3, 8u_C3R, 8u); IPP_MORPH_CASE(CV_8UC4, 8u_C4R, 8u); IPP_MORPH_CASE(CV_32FC1, 32f_C1R, 32f); IPP_MORPH_CASE(CV_32FC3, 32f_C3R, 32f); IPP_MORPH_CASE(CV_32FC4, 32f_C4R, 32f); default: return false; } #undef IPP_MORPH_CASE } else { IppiPoint point = {anchor.x, anchor.y}; #define IPP_MORPH_CASE(cvtype, flavor, data_type) \ case cvtype: \ {\ int bufSize = 0;\ if (0 > ippiFilterMinGetBufferSize_##flavor(src.cols, kernelSize, &bufSize))\ return false;\ AutoBuffer buf(bufSize + 64);\ uchar* buffer = alignPtr((uchar*)buf, 32);\ if (op == MORPH_ERODE)\ return (0 <= ippiFilterMinBorderReplicate_##flavor((Ipp##data_type *)_src->data, (int)_src->step[0], (Ipp##data_type *)dst.data, (int)dst.step[0], roiSize, kernelSize, point, buffer));\ return (0 <= ippiFilterMaxBorderReplicate_##flavor((Ipp##data_type *)_src->data, (int)_src->step[0], (Ipp##data_type *)dst.data, (int)dst.step[0], roiSize, kernelSize, point, buffer));\ }\ break; switch (type) { IPP_MORPH_CASE(CV_8UC1, 8u_C1R, 8u); IPP_MORPH_CASE(CV_8UC3, 8u_C3R, 8u); IPP_MORPH_CASE(CV_8UC4, 8u_C4R, 8u); IPP_MORPH_CASE(CV_32FC1, 32f_C1R, 32f); IPP_MORPH_CASE(CV_32FC3, 32f_C3R, 32f); IPP_MORPH_CASE(CV_32FC4, 32f_C4R, 32f); default: return false; } #undef IPP_MORPH_CASE #if defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 8 return false; /// It disables false positive warning in GCC 4.8.2 #endif } } static bool IPPMorphOp(int op, InputArray _src, OutputArray _dst, const Mat& _kernel, Point anchor, int iterations, int borderType, const Scalar &borderValue) { Mat src = _src.getMat(), kernel = _kernel; int type = src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); if( !( depth == CV_8U || depth == CV_32F ) || !(cn == 1 || cn == 3 || cn == 4) || !( borderType == cv::BORDER_REPLICATE || (borderType == cv::BORDER_CONSTANT && borderValue == morphologyDefaultBorderValue()) ) || !( op == MORPH_DILATE || op == MORPH_ERODE) || _src.isSubmatrix() ) return false; if( borderType == cv::BORDER_CONSTANT && kernel.data ) { int x, y; for( y = 0; y < kernel.rows; y++ ) { if( kernel.at(y, anchor.x) != 0 ) continue; for( x = 0; x < kernel.cols; x++ ) { if( kernel.at(y,x) != 0 ) return false; } } for( x = 0; x < kernel.cols; x++ ) { if( kernel.at(anchor.y, x) != 0 ) continue; for( y = 0; y < kernel.rows; y++ ) { if( kernel.at(y,x) != 0 ) return false; } } } Size ksize = kernel.data ? kernel.size() : Size(3,3); _dst.create( src.size(), src.type() ); Mat dst = _dst.getMat(); if( iterations == 0 || kernel.rows*kernel.cols == 1 ) { src.copyTo(dst); return true; } bool rectKernel = false; if( !kernel.data ) { ksize = Size(1+iterations*2,1+iterations*2); anchor = Point(iterations, iterations); rectKernel = true; iterations = 1; } else if( iterations >= 1 && countNonZero(kernel) == kernel.rows*kernel.cols ) { ksize = Size(ksize.width + (iterations-1)*(ksize.width-1), ksize.height + (iterations-1)*(ksize.height-1)), anchor = Point(anchor.x*iterations, anchor.y*iterations); kernel = Mat(); rectKernel = true; iterations = 1; } // TODO: implement the case of iterations > 1. if( iterations > 1 ) return false; if (IPPMorphReplicate( op, src, dst, kernel, ksize, anchor, rectKernel )) return true; return false; } #endif #ifdef HAVE_OPENCL static bool ocl_morphology_op(InputArray _src, OutputArray _dst, Mat kernel, const Size & ksize, const Point & anchor, int iterations, int op) { CV_Assert(op == MORPH_ERODE || op == MORPH_DILATE); int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0; if (depth == CV_64F && !doubleSupport) return false; UMat kernel8U; kernel.convertTo(kernel8U, CV_8U); kernel8U = kernel8U.reshape(1, 1); bool rectKernel = true; { Mat m = kernel.reshape(1, 1); for (int i = 0; i < m.size().area(); ++i) if (m.at(i) != 1) { rectKernel = false; break; } } UMat src = _src.getUMat(); #ifdef ANDROID size_t localThreads[3] = {16, 8, 1}; #else size_t localThreads[3] = {16, 16, 1}; #endif size_t globalThreads[3] = {(src.cols + localThreads[0] - 1) / localThreads[0] *localThreads[0], (src.rows + localThreads[1] - 1) / localThreads[1] *localThreads[1], 1}; if (localThreads[0]*localThreads[1] * 2 < (localThreads[0] + ksize.width - 1) * (localThreads[1] + ksize.height - 1)) return false; static const char * const op2str[] = { "ERODE", "DILATE" }; String buildOptions = format("-D RADIUSX=%d -D RADIUSY=%d -D LSIZE0=%d -D LSIZE1=%d -D %s%s%s" " -D T=%s -D DEPTH_%d -D cn=%d -D T1=%s", anchor.x, anchor.y, (int)localThreads[0], (int)localThreads[1], op2str[op], doubleSupport ? " -D DOUBLE_SUPPORT" : "", rectKernel ? " -D RECTKERNEL" : "", ocl::typeToStr(_src.type()), _src.depth(), cn, ocl::typeToStr(depth)); std::vector kernels; for (int i = 0; i < iterations; i++) { ocl::Kernel k("morph", ocl::imgproc::morph_oclsrc, buildOptions); if (k.empty()) return false; kernels.push_back(k); } _dst.create(src.size(), src.type()); UMat dst = _dst.getUMat(); if (iterations == 1 && src.u != dst.u) { Size wholesize; Point ofs; src.locateROI(wholesize, ofs); int wholecols = wholesize.width, wholerows = wholesize.height; kernels[0].args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnlyNoSize(dst), ofs.x, ofs.y, src.cols, src.rows, ocl::KernelArg::PtrReadOnly(kernel8U), wholecols, wholerows); return kernels[0].run(2, globalThreads, localThreads, false); } for (int i = 0; i < iterations; i++) { UMat source; Size wholesize; Point ofs; if (i == 0) { int cols = src.cols, rows = src.rows; src.locateROI(wholesize,ofs); src.adjustROI(ofs.y, wholesize.height - rows - ofs.y, ofs.x, wholesize.width - cols - ofs.x); if(src.u != dst.u) source = src; else src.copyTo(source); src.adjustROI(-ofs.y, -wholesize.height + rows + ofs.y, -ofs.x, -wholesize.width + cols + ofs.x); source.adjustROI(-ofs.y, -wholesize.height + rows + ofs.y, -ofs.x, -wholesize.width + cols + ofs.x); } else { int cols = dst.cols, rows = dst.rows; dst.locateROI(wholesize,ofs); dst.adjustROI(ofs.y, wholesize.height - rows - ofs.y, ofs.x, wholesize.width - cols - ofs.x); dst.copyTo(source); dst.adjustROI(-ofs.y, -wholesize.height + rows + ofs.y, -ofs.x, -wholesize.width + cols + ofs.x); source.adjustROI(-ofs.y, -wholesize.height + rows + ofs.y, -ofs.x, -wholesize.width + cols + ofs.x); } source.locateROI(wholesize, ofs); kernels[i].args(ocl::KernelArg::ReadOnlyNoSize(source), ocl::KernelArg::WriteOnlyNoSize(dst), ofs.x, ofs.y, source.cols, source.rows, ocl::KernelArg::PtrReadOnly(kernel8U), wholesize.width, wholesize.height); if (!kernels[i].run(2, globalThreads, localThreads, false)) return false; } return true; } #endif static void morphOp( int op, InputArray _src, OutputArray _dst, InputArray _kernel, Point anchor, int iterations, int borderType, const Scalar& borderValue ) { #ifdef HAVE_OPENCL int src_type = _src.type(), src_cn = CV_MAT_CN(src_type), src_depth = CV_MAT_DEPTH(src_type); #endif Mat kernel = _kernel.getMat(); Size ksize = kernel.data ? kernel.size() : Size(3,3); anchor = normalizeAnchor(anchor, ksize); if (iterations == 0 || kernel.rows*kernel.cols == 1) { _src.copyTo(_dst); return; } if (!kernel.data) { kernel = getStructuringElement(MORPH_RECT, Size(1+iterations*2,1+iterations*2)); anchor = Point(iterations, iterations); iterations = 1; } else if( iterations > 1 && countNonZero(kernel) == kernel.rows*kernel.cols ) { anchor = Point(anchor.x*iterations, anchor.y*iterations); kernel = getStructuringElement(MORPH_RECT, Size(ksize.width + (iterations-1)*(ksize.width-1), ksize.height + (iterations-1)*(ksize.height-1)), anchor); iterations = 1; } CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2 && src_cn <= 4 && (src_depth == CV_8U || src_depth == CV_32F || src_depth == CV_64F ) && borderType == cv::BORDER_CONSTANT && borderValue == morphologyDefaultBorderValue() && (op == MORPH_ERODE || op == MORPH_DILATE), ocl_morphology_op(_src, _dst, kernel, ksize, anchor, iterations, op) ) #if IPP_VERSION_X100 >= 801 if( IPPMorphOp(op, _src, _dst, kernel, anchor, iterations, borderType, borderValue) ) return; #endif Mat src = _src.getMat(); _dst.create( src.size(), src.type() ); Mat dst = _dst.getMat(); int nStripes = 1; #if defined HAVE_TEGRA_OPTIMIZATION if (src.data != dst.data && iterations == 1 && //NOTE: threads are not used for inplace processing (borderType & BORDER_ISOLATED) == 0 && //TODO: check border types src.rows >= 64 ) //NOTE: just heuristics nStripes = 4; #endif parallel_for_(Range(0, nStripes), MorphologyRunner(src, dst, nStripes, iterations, op, kernel, anchor, borderType, borderType, borderValue)); //Ptr f = createMorphologyFilter(op, src.type(), // kernel, anchor, borderType, borderType, borderValue ); //f->apply( src, dst ); //for( int i = 1; i < iterations; i++ ) // f->apply( dst, dst ); } } void cv::erode( InputArray src, OutputArray dst, InputArray kernel, Point anchor, int iterations, int borderType, const Scalar& borderValue ) { morphOp( MORPH_ERODE, src, dst, kernel, anchor, iterations, borderType, borderValue ); } void cv::dilate( InputArray src, OutputArray dst, InputArray kernel, Point anchor, int iterations, int borderType, const Scalar& borderValue ) { morphOp( MORPH_DILATE, src, dst, kernel, anchor, iterations, borderType, borderValue ); } void cv::morphologyEx( InputArray _src, OutputArray _dst, int op, InputArray kernel, Point anchor, int iterations, int borderType, const Scalar& borderValue ) { Mat src = _src.getMat(), temp; _dst.create(src.size(), src.type()); Mat dst = _dst.getMat(); switch( op ) { case MORPH_ERODE: erode( src, dst, kernel, anchor, iterations, borderType, borderValue ); break; case MORPH_DILATE: dilate( src, dst, kernel, anchor, iterations, borderType, borderValue ); break; case MORPH_OPEN: erode( src, dst, kernel, anchor, iterations, borderType, borderValue ); dilate( dst, dst, kernel, anchor, iterations, borderType, borderValue ); break; case CV_MOP_CLOSE: dilate( src, dst, kernel, anchor, iterations, borderType, borderValue ); erode( dst, dst, kernel, anchor, iterations, borderType, borderValue ); break; case CV_MOP_GRADIENT: erode( src, temp, kernel, anchor, iterations, borderType, borderValue ); dilate( src, dst, kernel, anchor, iterations, borderType, borderValue ); dst -= temp; break; case CV_MOP_TOPHAT: if( src.data != dst.data ) temp = dst; erode( src, temp, kernel, anchor, iterations, borderType, borderValue ); dilate( temp, temp, kernel, anchor, iterations, borderType, borderValue ); dst = src - temp; break; case CV_MOP_BLACKHAT: if( src.data != dst.data ) temp = dst; dilate( src, temp, kernel, anchor, iterations, borderType, borderValue ); erode( temp, temp, kernel, anchor, iterations, borderType, borderValue ); dst = temp - src; break; default: CV_Error( CV_StsBadArg, "unknown morphological operation" ); } } CV_IMPL IplConvKernel * cvCreateStructuringElementEx( int cols, int rows, int anchorX, int anchorY, int shape, int *values ) { cv::Size ksize = cv::Size(cols, rows); cv::Point anchor = cv::Point(anchorX, anchorY); CV_Assert( cols > 0 && rows > 0 && anchor.inside(cv::Rect(0,0,cols,rows)) && (shape != CV_SHAPE_CUSTOM || values != 0)); int i, size = rows * cols; int element_size = sizeof(IplConvKernel) + size*sizeof(int); IplConvKernel *element = (IplConvKernel*)cvAlloc(element_size + 32); element->nCols = cols; element->nRows = rows; element->anchorX = anchorX; element->anchorY = anchorY; element->nShiftR = shape < CV_SHAPE_ELLIPSE ? shape : CV_SHAPE_CUSTOM; element->values = (int*)(element + 1); if( shape == CV_SHAPE_CUSTOM ) { for( i = 0; i < size; i++ ) element->values[i] = values[i]; } else { cv::Mat elem = cv::getStructuringElement(shape, ksize, anchor); for( i = 0; i < size; i++ ) element->values[i] = elem.data[i]; } return element; } CV_IMPL void cvReleaseStructuringElement( IplConvKernel ** element ) { if( !element ) CV_Error( CV_StsNullPtr, "" ); cvFree( element ); } static void convertConvKernel( const IplConvKernel* src, cv::Mat& dst, cv::Point& anchor ) { if(!src) { anchor = cv::Point(1,1); dst.release(); return; } anchor = cv::Point(src->anchorX, src->anchorY); dst.create(src->nRows, src->nCols, CV_8U); int i, size = src->nRows*src->nCols; for( i = 0; i < size; i++ ) dst.data[i] = (uchar)(src->values[i] != 0); } CV_IMPL void cvErode( const CvArr* srcarr, CvArr* dstarr, IplConvKernel* element, int iterations ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), kernel; CV_Assert( src.size() == dst.size() && src.type() == dst.type() ); cv::Point anchor; convertConvKernel( element, kernel, anchor ); cv::erode( src, dst, kernel, anchor, iterations, cv::BORDER_REPLICATE ); } CV_IMPL void cvDilate( const CvArr* srcarr, CvArr* dstarr, IplConvKernel* element, int iterations ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), kernel; CV_Assert( src.size() == dst.size() && src.type() == dst.type() ); cv::Point anchor; convertConvKernel( element, kernel, anchor ); cv::dilate( src, dst, kernel, anchor, iterations, cv::BORDER_REPLICATE ); } CV_IMPL void cvMorphologyEx( const void* srcarr, void* dstarr, void*, IplConvKernel* element, int op, int iterations ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), kernel; CV_Assert( src.size() == dst.size() && src.type() == dst.type() ); cv::Point anchor; IplConvKernel* temp_element = NULL; if (!element) { temp_element = cvCreateStructuringElementEx(3, 3, 1, 1, CV_SHAPE_RECT); } else { temp_element = element; } convertConvKernel( temp_element, kernel, anchor ); if (!element) { cvReleaseStructuringElement(&temp_element); } cv::morphologyEx( src, dst, op, kernel, anchor, iterations, cv::BORDER_REPLICATE ); } /* End of file. */