/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // (3-clause BSD License) // // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * Neither the names of the copyright holders nor the names of the contributors // may be used to endorse or promote products derived from this software // without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall copyright holders or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "npy_blob.hpp" #include namespace opencv_test { namespace { template static std::string _tf(TString filename) { return (getOpenCVExtraDir() + "/dnn/") + filename; } TEST(Test_Darknet, read_tiny_yolo_voc) { Net net = readNetFromDarknet(_tf("tiny-yolo-voc.cfg")); ASSERT_FALSE(net.empty()); } TEST(Test_Darknet, read_yolo_voc) { Net net = readNetFromDarknet(_tf("yolo-voc.cfg")); ASSERT_FALSE(net.empty()); } TEST(Test_Darknet, read_yolo_voc_stream) { applyTestTag(CV_TEST_TAG_MEMORY_1GB); Mat ref; Mat sample = imread(_tf("dog416.png")); Mat inp = blobFromImage(sample, 1.0/255, Size(416, 416), Scalar(), true, false); const std::string cfgFile = findDataFile("dnn/yolo-voc.cfg"); const std::string weightsFile = findDataFile("dnn/yolo-voc.weights", false); // Import by paths. { Net net = readNetFromDarknet(cfgFile, weightsFile); net.setInput(inp); net.setPreferableBackend(DNN_BACKEND_OPENCV); ref = net.forward(); } // Import from bytes array. { std::vector cfg, weights; readFileContent(cfgFile, cfg); readFileContent(weightsFile, weights); Net net = readNetFromDarknet(cfg.data(), cfg.size(), weights.data(), weights.size()); net.setInput(inp); net.setPreferableBackend(DNN_BACKEND_OPENCV); Mat out = net.forward(); normAssert(ref, out); } } class Test_Darknet_layers : public DNNTestLayer { public: void testDarknetLayer(const std::string& name, bool hasWeights = false, bool testBatchProcessing = true) { SCOPED_TRACE(name); Mat inp = blobFromNPY(findDataFile("dnn/darknet/" + name + "_in.npy")); Mat ref = blobFromNPY(findDataFile("dnn/darknet/" + name + "_out.npy")); std::string cfg = findDataFile("dnn/darknet/" + name + ".cfg"); std::string model = ""; if (hasWeights) model = findDataFile("dnn/darknet/" + name + ".weights"); checkBackend(&inp, &ref); Net net = readNet(cfg, model); net.setPreferableBackend(backend); net.setPreferableTarget(target); net.setInput(inp); Mat out = net.forward(); normAssert(out, ref, "", default_l1, default_lInf); if (inp.size[0] == 1 && testBatchProcessing) // test handling of batch size { SCOPED_TRACE("batch size 2"); #if defined(INF_ENGINE_RELEASE) if (target == DNN_TARGET_MYRIAD && name == "shortcut") applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); #endif std::vector sz2 = shape(inp); sz2[0] = 2; Net net2 = readNet(cfg, model); net2.setPreferableBackend(backend); net2.setPreferableTarget(target); Range ranges0[4] = { Range(0, 1), Range::all(), Range::all(), Range::all() }; Range ranges1[4] = { Range(1, 2), Range::all(), Range::all(), Range::all() }; Mat inp2(sz2, inp.type(), Scalar::all(0)); inp.copyTo(inp2(ranges0)); inp.copyTo(inp2(ranges1)); net2.setInput(inp2); Mat out2 = net2.forward(); EXPECT_EQ(0, cv::norm(out2(ranges0), out2(ranges1), NORM_INF)) << "Batch result is not equal: " << name; Mat ref2 = ref; if (ref.dims == 2 && out2.dims == 3) { int ref_3d_sizes[3] = {1, ref.rows, ref.cols}; ref2 = Mat(3, ref_3d_sizes, ref.type(), (void*)ref.data); } /*else if (ref.dims == 3 && out2.dims == 4) { int ref_4d_sizes[4] = {1, ref.size[0], ref.size[1], ref.size[2]}; ref2 = Mat(4, ref_4d_sizes, ref.type(), (void*)ref.data); }*/ ASSERT_EQ(out2.dims, ref2.dims) << ref.dims; normAssert(out2(ranges0), ref2, "", default_l1, default_lInf); normAssert(out2(ranges1), ref2, "", default_l1, default_lInf); } } }; class Test_Darknet_nets : public DNNTestLayer { public: // Test object detection network from Darknet framework. void testDarknetModel(const std::string& cfg, const std::string& weights, const std::vector >& refClassIds, const std::vector >& refConfidences, const std::vector >& refBoxes, double scoreDiff, double iouDiff, float confThreshold = 0.24, float nmsThreshold = 0.4) { checkBackend(); Mat img1 = imread(_tf("dog416.png")); Mat img2 = imread(_tf("street.png")); std::vector samples(2); samples[0] = img1; samples[1] = img2; // determine test type, whether batch or single img int batch_size = refClassIds.size(); CV_Assert(batch_size == 1 || batch_size == 2); samples.resize(batch_size); Mat inp = blobFromImages(samples, 1.0/255, Size(416, 416), Scalar(), true, false); Net net = readNet(findDataFile("dnn/" + cfg), findDataFile("dnn/" + weights, false)); net.setPreferableBackend(backend); net.setPreferableTarget(target); net.setInput(inp); std::vector outs; net.forward(outs, net.getUnconnectedOutLayersNames()); for (int b = 0; b < batch_size; ++b) { std::vector classIds; std::vector confidences; std::vector boxes; for (int i = 0; i < outs.size(); ++i) { Mat out; if (batch_size > 1){ // get the sample slice from 3D matrix (batch, box, classes+5) Range ranges[3] = {Range(b, b+1), Range::all(), Range::all()}; out = outs[i](ranges).reshape(1, outs[i].size[1]); }else{ out = outs[i]; } for (int j = 0; j < out.rows; ++j) { Mat scores = out.row(j).colRange(5, out.cols); double confidence; Point maxLoc; minMaxLoc(scores, 0, &confidence, 0, &maxLoc); if (confidence > confThreshold) { float* detection = out.ptr(j); double centerX = detection[0]; double centerY = detection[1]; double width = detection[2]; double height = detection[3]; boxes.push_back(Rect2d(centerX - 0.5 * width, centerY - 0.5 * height, width, height)); confidences.push_back(confidence); classIds.push_back(maxLoc.x); } } } // here we need NMS of boxes std::vector indices; NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices); std::vector nms_classIds; std::vector nms_confidences; std::vector nms_boxes; for (size_t i = 0; i < indices.size(); ++i) { int idx = indices[i]; Rect2d box = boxes[idx]; float conf = confidences[idx]; int class_id = classIds[idx]; nms_boxes.push_back(box); nms_confidences.push_back(conf); nms_classIds.push_back(class_id); #if 0 // use to update test reference data std::cout << b << ", " << class_id << ", " << conf << "f, " << box.x << "f, " << box.y << "f, " << box.x + box.width << "f, " << box.y + box.height << "f," << std::endl; #endif } normAssertDetections(refClassIds[b], refConfidences[b], refBoxes[b], nms_classIds, nms_confidences, nms_boxes, format("batch size %d, sample %d\n", batch_size, b).c_str(), confThreshold, scoreDiff, iouDiff); } } void testDarknetModel(const std::string& cfg, const std::string& weights, const std::vector& refClassIds, const std::vector& refConfidences, const std::vector& refBoxes, double scoreDiff, double iouDiff, float confThreshold = 0.24, float nmsThreshold = 0.4) { testDarknetModel(cfg, weights, std::vector >(1, refClassIds), std::vector >(1, refConfidences), std::vector >(1, refBoxes), scoreDiff, iouDiff, confThreshold, nmsThreshold); } void testDarknetModel(const std::string& cfg, const std::string& weights, const cv::Mat& ref, double scoreDiff, double iouDiff, float confThreshold = 0.24, float nmsThreshold = 0.4) { CV_Assert(ref.cols == 7); std::vector > refClassIds; std::vector > refScores; std::vector > refBoxes; for (int i = 0; i < ref.rows; ++i) { int batchId = static_cast(ref.at(i, 0)); int classId = static_cast(ref.at(i, 1)); float score = ref.at(i, 2); float left = ref.at(i, 3); float top = ref.at(i, 4); float right = ref.at(i, 5); float bottom = ref.at(i, 6); Rect2d box(left, top, right - left, bottom - top); if (batchId >= refClassIds.size()) { refClassIds.resize(batchId + 1); refScores.resize(batchId + 1); refBoxes.resize(batchId + 1); } refClassIds[batchId].push_back(classId); refScores[batchId].push_back(score); refBoxes[batchId].push_back(box); } testDarknetModel(cfg, weights, refClassIds, refScores, refBoxes, scoreDiff, iouDiff, confThreshold, nmsThreshold); } }; TEST_P(Test_Darknet_nets, YoloVoc) { applyTestTag( #if defined(OPENCV_32BIT_CONFIGURATION) && defined(HAVE_OPENCL) CV_TEST_TAG_MEMORY_2GB, #else CV_TEST_TAG_MEMORY_1GB, #endif CV_TEST_TAG_LONG ); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); #endif #if defined(INF_ENGINE_RELEASE) if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); // need to update check function #endif // batchId, classId, confidence, left, top, right, bottom Mat ref = (Mat_(6, 7) << 0, 6, 0.750469f, 0.577374f, 0.127391f, 0.902949f, 0.300809f, // a car 0, 1, 0.780879f, 0.270762f, 0.264102f, 0.732475f, 0.745412f, // a bicycle 0, 11, 0.901615f, 0.1386f, 0.338509f, 0.421337f, 0.938789f, // a dog 1, 14, 0.623813f, 0.183179f, 0.381921f, 0.247726f, 0.625847f, // a person 1, 6, 0.667770f, 0.446555f, 0.453578f, 0.499986f, 0.519167f, // a car 1, 6, 0.844947f, 0.637058f, 0.460398f, 0.828508f, 0.66427f); // a car double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1e-2 : 8e-5; double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.018 : 3e-4; double nmsThreshold = (target == DNN_TARGET_MYRIAD) ? 0.397 : 0.4; std::string config_file = "yolo-voc.cfg"; std::string weights_file = "yolo-voc.weights"; { SCOPED_TRACE("batch size 1"); testDarknetModel(config_file, weights_file, ref.rowRange(0, 3), scoreDiff, iouDiff); } { SCOPED_TRACE("batch size 2"); testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff, 0.24, nmsThreshold); } } TEST_P(Test_Darknet_nets, TinyYoloVoc) { applyTestTag(CV_TEST_TAG_MEMORY_512MB); #if defined(INF_ENGINE_RELEASE) if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); // need to update check function #endif // batchId, classId, confidence, left, top, right, bottom Mat ref = (Mat_(4, 7) << 0, 6, 0.761967f, 0.579042f, 0.159161f, 0.894482f, 0.31994f, // a car 0, 11, 0.780595f, 0.129696f, 0.386467f, 0.445275f, 0.920994f, // a dog 1, 6, 0.651450f, 0.460526f, 0.458019f, 0.522527f, 0.5341f, // a car 1, 6, 0.928758f, 0.651024f, 0.463539f, 0.823784f, 0.654998f); // a car double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 8e-3 : 8e-5; double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.018 : 3e-4; std::string config_file = "tiny-yolo-voc.cfg"; std::string weights_file = "tiny-yolo-voc.weights"; { SCOPED_TRACE("batch size 1"); testDarknetModel(config_file, weights_file, ref.rowRange(0, 2), scoreDiff, iouDiff); } { SCOPED_TRACE("batch size 2"); testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff); } } #ifdef HAVE_INF_ENGINE static const std::chrono::milliseconds async_timeout(10000); typedef testing::TestWithParam > > Test_Darknet_nets_async; TEST_P(Test_Darknet_nets_async, Accuracy) { Backend backendId = get<0>(get<1>(GetParam())); Target targetId = get<1>(get<1>(GetParam())); if (INF_ENGINE_VER_MAJOR_LT(2019020000) && backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); applyTestTag(CV_TEST_TAG_MEMORY_512MB); if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); std::string prefix = get<0>(GetParam()); if (targetId == DNN_TARGET_MYRIAD && prefix == "yolov4") // NC_OUT_OF_MEMORY applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION); if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) throw SkipTestException("No support for async forward"); const int numInputs = 2; std::vector inputs(numInputs); int blobSize[] = {1, 3, 416, 416}; for (int i = 0; i < numInputs; ++i) { inputs[i].create(4, &blobSize[0], CV_32F); randu(inputs[i], 0, 1); } Net netSync = readNet(findDataFile("dnn/" + prefix + ".cfg"), findDataFile("dnn/" + prefix + ".weights", false)); netSync.setPreferableBackend(backendId); netSync.setPreferableTarget(targetId); // Run synchronously. std::vector refs(numInputs); for (int i = 0; i < numInputs; ++i) { netSync.setInput(inputs[i]); refs[i] = netSync.forward().clone(); } Net netAsync = readNet(findDataFile("dnn/" + prefix + ".cfg"), findDataFile("dnn/" + prefix + ".weights", false)); netAsync.setPreferableBackend(backendId); netAsync.setPreferableTarget(targetId); // Run asynchronously. To make test more robust, process inputs in the reversed order. for (int i = numInputs - 1; i >= 0; --i) { netAsync.setInput(inputs[i]); AsyncArray out = netAsync.forwardAsync(); ASSERT_TRUE(out.valid()); Mat result; EXPECT_TRUE(out.get(result, async_timeout)); normAssert(refs[i], result, format("Index: %d", i).c_str(), 0, 0); } } INSTANTIATE_TEST_CASE_P(/**/, Test_Darknet_nets_async, Combine( Values("yolo-voc", "tiny-yolo-voc", "yolov3", "yolov4"), dnnBackendsAndTargets() )); #endif TEST_P(Test_Darknet_nets, YOLOv3) { applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB)); if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // batchId, classId, confidence, left, top, right, bottom const int N0 = 3; const int N1 = 6; static const float ref_[/* (N0 + N1) * 7 */] = { 0, 16, 0.998836f, 0.160024f, 0.389964f, 0.417885f, 0.943716f, 0, 1, 0.987908f, 0.150913f, 0.221933f, 0.742255f, 0.746261f, 0, 7, 0.952983f, 0.614621f, 0.150257f, 0.901368f, 0.289251f, 1, 2, 0.997412f, 0.647584f, 0.459939f, 0.821037f, 0.663947f, 1, 2, 0.989633f, 0.450719f, 0.463353f, 0.496306f, 0.522258f, 1, 0, 0.980053f, 0.195856f, 0.378454f, 0.258626f, 0.629257f, 1, 9, 0.785341f, 0.665503f, 0.373543f, 0.688893f, 0.439244f, 1, 9, 0.733275f, 0.376029f, 0.315694f, 0.401776f, 0.395165f, 1, 9, 0.384815f, 0.659824f, 0.372389f, 0.673927f, 0.429412f, }; Mat ref(N0 + N1, 7, CV_32FC1, (void*)ref_); double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.006 : 8e-5; double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.042 : 3e-4; std::string config_file = "yolov3.cfg"; std::string weights_file = "yolov3.weights"; #if defined(INF_ENGINE_RELEASE) if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) { scoreDiff = 0.04; iouDiff = 0.2; } #endif { SCOPED_TRACE("batch size 1"); testDarknetModel(config_file, weights_file, ref.rowRange(0, N0), scoreDiff, iouDiff); } #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION); else if (target == DNN_TARGET_OPENCL_FP16 && INF_ENGINE_VER_MAJOR_LE(202010000)) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION); else if (target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); } #endif { SCOPED_TRACE("batch size 2"); testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff); } } TEST_P(Test_Darknet_nets, YOLOv4) { applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB)); #if defined(INF_ENGINE_RELEASE) if (target == DNN_TARGET_MYRIAD) // NC_OUT_OF_MEMORY applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif // batchId, classId, confidence, left, top, right, bottom const int N0 = 3; const int N1 = 7; static const float ref_[/* (N0 + N1) * 7 */] = { 0, 16, 0.992194f, 0.172375f, 0.402458f, 0.403918f, 0.932801f, 0, 1, 0.988326f, 0.166708f, 0.228236f, 0.737208f, 0.735803f, 0, 7, 0.94639f, 0.602523f, 0.130399f, 0.901623f, 0.298452f, 1, 2, 0.99761f, 0.646556f, 0.45985f, 0.816041f, 0.659067f, 1, 0, 0.988913f, 0.201726f, 0.360282f, 0.266181f, 0.631728f, 1, 2, 0.98233f, 0.452007f, 0.462217f, 0.495612f, 0.521687f, 1, 9, 0.919195f, 0.374642f, 0.316524f, 0.398126f, 0.393714f, 1, 9, 0.856303f, 0.666842f, 0.372215f, 0.685539f, 0.44141f, 1, 9, 0.313516f, 0.656791f, 0.374734f, 0.671959f, 0.438371f, 1, 9, 0.256625f, 0.940232f, 0.326931f, 0.967586f, 0.374002f, }; Mat ref(N0 + N1, 7, CV_32FC1, (void*)ref_); double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.006 : 8e-5; double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.042 : 3e-4; std::string config_file = "yolov4.cfg"; std::string weights_file = "yolov4.weights"; #if defined(INF_ENGINE_RELEASE) if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) { scoreDiff = 0.04; iouDiff = 0.2; } #endif { SCOPED_TRACE("batch size 1"); testDarknetModel(config_file, weights_file, ref.rowRange(0, N0), scoreDiff, iouDiff); } { SCOPED_TRACE("batch size 2"); #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) { if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION); else if (target == DNN_TARGET_OPENCL_FP16 && INF_ENGINE_VER_MAJOR_LE(202010000)) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION); else if (target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); } #endif testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff); } } INSTANTIATE_TEST_CASE_P(/**/, Test_Darknet_nets, dnnBackendsAndTargets()); TEST_P(Test_Darknet_layers, shortcut) { testDarknetLayer("shortcut"); testDarknetLayer("shortcut_leaky"); testDarknetLayer("shortcut_unequal"); testDarknetLayer("shortcut_unequal_2"); } TEST_P(Test_Darknet_layers, upsample) { testDarknetLayer("upsample"); } TEST_P(Test_Darknet_layers, mish) { testDarknetLayer("mish", true); } TEST_P(Test_Darknet_layers, avgpool_softmax) { testDarknetLayer("avgpool_softmax"); } TEST_P(Test_Darknet_layers, region) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && INF_ENGINE_VER_MAJOR_GE(2020020000)) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif testDarknetLayer("region"); } TEST_P(Test_Darknet_layers, reorg) { testDarknetLayer("reorg"); } TEST_P(Test_Darknet_layers, maxpool) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000) if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); #endif testDarknetLayer("maxpool"); } TEST_P(Test_Darknet_layers, convolutional) { if (target == DNN_TARGET_MYRIAD) { default_l1 = 0.01f; } testDarknetLayer("convolutional", true); } TEST_P(Test_Darknet_layers, scale_channels) { // TODO: test fails for batches due to a bug/missing feature in ScaleLayer testDarknetLayer("scale_channels", false, false); } TEST_P(Test_Darknet_layers, connected) { if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); testDarknetLayer("connected", true); } INSTANTIATE_TEST_CASE_P(/**/, Test_Darknet_layers, dnnBackendsAndTargets()); }} // namespace