/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace std; namespace cv { namespace detail { Ptr Warper::createByCameraFocal(float focal, int type, bool try_gpu) { #ifndef ANDROID bool can_use_gpu = try_gpu && gpu::getCudaEnabledDeviceCount(); if (can_use_gpu) { if (type == PLANE) return new PlaneWarperGpu(focal); if (type == CYLINDRICAL) return new CylindricalWarperGpu(focal); if (type == SPHERICAL) return new SphericalWarperGpu(focal); } else #endif { if (type == PLANE) return new PlaneWarper(focal); if (type == CYLINDRICAL) return new CylindricalWarper(focal); if (type == SPHERICAL) return new SphericalWarper(focal); } CV_Error(CV_StsBadArg, "unsupported warping type"); return NULL; } void ProjectorBase::setTransformation(const Mat &R) { CV_Assert(R.size() == Size(3, 3)); CV_Assert(R.type() == CV_32F); r[0] = R.at(0, 0); r[1] = R.at(0, 1); r[2] = R.at(0, 2); r[3] = R.at(1, 0); r[4] = R.at(1, 1); r[5] = R.at(1, 2); r[6] = R.at(2, 0); r[7] = R.at(2, 1); r[8] = R.at(2, 2); Mat Rinv = R.inv(); rinv[0] = Rinv.at(0, 0); rinv[1] = Rinv.at(0, 1); rinv[2] = Rinv.at(0, 2); rinv[3] = Rinv.at(1, 0); rinv[4] = Rinv.at(1, 1); rinv[5] = Rinv.at(1, 2); rinv[6] = Rinv.at(2, 0); rinv[7] = Rinv.at(2, 1); rinv[8] = Rinv.at(2, 2); } void PlaneWarper::detectResultRoi(Point &dst_tl, Point &dst_br) { float tl_uf = numeric_limits::max(); float tl_vf = numeric_limits::max(); float br_uf = -numeric_limits::max(); float br_vf = -numeric_limits::max(); float u, v; projector_.mapForward(0, 0, u, v); tl_uf = min(tl_uf, u); tl_vf = min(tl_vf, v); br_uf = max(br_uf, u); br_vf = max(br_vf, v); projector_.mapForward(0, static_cast(src_size_.height - 1), u, v); tl_uf = min(tl_uf, u); tl_vf = min(tl_vf, v); br_uf = max(br_uf, u); br_vf = max(br_vf, v); projector_.mapForward(static_cast(src_size_.width - 1), 0, u, v); tl_uf = min(tl_uf, u); tl_vf = min(tl_vf, v); br_uf = max(br_uf, u); br_vf = max(br_vf, v); projector_.mapForward(static_cast(src_size_.width - 1), static_cast(src_size_.height - 1), u, v); tl_uf = min(tl_uf, u); tl_vf = min(tl_vf, v); br_uf = max(br_uf, u); br_vf = max(br_vf, v); dst_tl.x = static_cast(tl_uf); dst_tl.y = static_cast(tl_vf); dst_br.x = static_cast(br_uf); dst_br.y = static_cast(br_vf); } #ifndef ANDROID Point PlaneWarperGpu::warp(const Mat &src, float focal, const Mat &R, Mat &dst, int interp_mode, int border_mode) { src_size_ = src.size(); projector_.size = src.size(); projector_.focal = focal; projector_.setTransformation(R); Point dst_tl, dst_br; detectResultRoi(dst_tl, dst_br); gpu::buildWarpPlaneMaps(src.size(), Rect(dst_tl, Point(dst_br.x+1, dst_br.y+1)), R, focal, projector_.scale, projector_.plane_dist, d_xmap_, d_ymap_); gpu::ensureSizeIsEnough(src.size(), src.type(), d_src_); d_src_.upload(src); gpu::ensureSizeIsEnough(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, src.type(), d_dst_); gpu::remap(d_src_, d_dst_, d_xmap_, d_ymap_, interp_mode, border_mode); d_dst_.download(dst); return dst_tl; } #endif void SphericalWarper::detectResultRoi(Point &dst_tl, Point &dst_br) { detectResultRoiByBorder(dst_tl, dst_br); float tl_uf = static_cast(dst_tl.x); float tl_vf = static_cast(dst_tl.y); float br_uf = static_cast(dst_br.x); float br_vf = static_cast(dst_br.y); float x = projector_.rinv[1]; float y = projector_.rinv[4]; float z = projector_.rinv[7]; if (y > 0.f) { x = projector_.focal * x / z + src_size_.width * 0.5f; y = projector_.focal * y / z + src_size_.height * 0.5f; if (x > 0.f && x < src_size_.width && y > 0.f && y < src_size_.height) { tl_uf = min(tl_uf, 0.f); tl_vf = min(tl_vf, static_cast(CV_PI * projector_.scale)); br_uf = max(br_uf, 0.f); br_vf = max(br_vf, static_cast(CV_PI * projector_.scale)); } } x = projector_.rinv[1]; y = -projector_.rinv[4]; z = projector_.rinv[7]; if (y > 0.f) { x = projector_.focal * x / z + src_size_.width * 0.5f; y = projector_.focal * y / z + src_size_.height * 0.5f; if (x > 0.f && x < src_size_.width && y > 0.f && y < src_size_.height) { tl_uf = min(tl_uf, 0.f); tl_vf = min(tl_vf, static_cast(0)); br_uf = max(br_uf, 0.f); br_vf = max(br_vf, static_cast(0)); } } dst_tl.x = static_cast(tl_uf); dst_tl.y = static_cast(tl_vf); dst_br.x = static_cast(br_uf); dst_br.y = static_cast(br_vf); } #ifndef ANDROID Point SphericalWarperGpu::warp(const Mat &src, float focal, const Mat &R, Mat &dst, int interp_mode, int border_mode) { src_size_ = src.size(); projector_.size = src.size(); projector_.focal = focal; projector_.setTransformation(R); Point dst_tl, dst_br; detectResultRoi(dst_tl, dst_br); gpu::buildWarpSphericalMaps(src.size(), Rect(dst_tl, Point(dst_br.x+1, dst_br.y+1)), R, focal, projector_.scale, d_xmap_, d_ymap_); gpu::ensureSizeIsEnough(src.size(), src.type(), d_src_); d_src_.upload(src); gpu::ensureSizeIsEnough(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, src.type(), d_dst_); gpu::remap(d_src_, d_dst_, d_xmap_, d_ymap_, interp_mode, border_mode); d_dst_.download(dst); return dst_tl; } Point CylindricalWarperGpu::warp(const Mat &src, float focal, const Mat &R, Mat &dst, int interp_mode, int border_mode) { src_size_ = src.size(); projector_.size = src.size(); projector_.focal = focal; projector_.setTransformation(R); Point dst_tl, dst_br; detectResultRoi(dst_tl, dst_br); gpu::buildWarpCylindricalMaps(src.size(), Rect(dst_tl, Point(dst_br.x+1, dst_br.y+1)), R, focal, projector_.scale, d_xmap_, d_ymap_); gpu::ensureSizeIsEnough(src.size(), src.type(), d_src_); d_src_.upload(src); gpu::ensureSizeIsEnough(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, src.type(), d_dst_); gpu::remap(d_src_, d_dst_, d_xmap_, d_ymap_, interp_mode, border_mode); d_dst_.download(dst); return dst_tl; } #endif } // namespace detail } // namespace cv