#include #include #include #include "opencv2/highgui/highgui.hpp" #include "opencv2/ocl/ocl.hpp" #include "opencv2/video/video.hpp" using namespace std; using namespace cv; using namespace cv::ocl; typedef unsigned char uchar; #define LOOP_NUM 10 int64 work_begin = 0; int64 work_end = 0; static void workBegin() { work_begin = getTickCount(); } static void workEnd() { work_end += (getTickCount() - work_begin); } static double getTime() { return work_end * 1000. / getTickFrequency(); } template inline T clamp (T x, T a, T b) { return ((x) > (a) ? ((x) < (b) ? (x) : (b)) : (a)); } template inline T mapValue(T x, T a, T b, T c, T d) { x = clamp(x, a, b); return c + (d - c) * (x - a) / (b - a); } static void getFlowField(const Mat& u, const Mat& v, Mat& flowField) { float maxDisplacement = 1.0f; for (int i = 0; i < u.rows; ++i) { const float* ptr_u = u.ptr(i); const float* ptr_v = v.ptr(i); for (int j = 0; j < u.cols; ++j) { float d = max(fabsf(ptr_u[j]), fabsf(ptr_v[j])); if (d > maxDisplacement) maxDisplacement = d; } } flowField.create(u.size(), CV_8UC4); for (int i = 0; i < flowField.rows; ++i) { const float* ptr_u = u.ptr(i); const float* ptr_v = v.ptr(i); Vec4b* row = flowField.ptr(i); for (int j = 0; j < flowField.cols; ++j) { row[j][0] = 0; row[j][1] = static_cast (mapValue (-ptr_v[j], -maxDisplacement, maxDisplacement, 0.0f, 255.0f)); row[j][2] = static_cast (mapValue ( ptr_u[j], -maxDisplacement, maxDisplacement, 0.0f, 255.0f)); row[j][3] = 255; } } } int main(int argc, const char* argv[]) { const char* keys = "{ h | help | false | print help message }" "{ l | left | | specify left image }" "{ r | right | | specify right image }" "{ o | output | tvl1_output.jpg | specify output save path }" "{ c | camera | 0 | enable camera capturing }" "{ s | use_cpu | false | use cpu or gpu to process the image }" "{ v | video | | use video as input }"; CommandLineParser cmd(argc, argv, keys); if (cmd.get("help")) { cout << "Usage: pyrlk_optical_flow [options]" << endl; cout << "Available options:" << endl; cmd.printParams(); return 0; } bool defaultPicturesFail = false; string fname0 = cmd.get("l"); string fname1 = cmd.get("r"); string vdofile = cmd.get("v"); string outpath = cmd.get("o"); bool useCPU = cmd.get("s"); bool useCamera = cmd.get("c"); int inputName = cmd.get("c"); Mat frame0 = imread(fname0, cv::IMREAD_GRAYSCALE); Mat frame1 = imread(fname1, cv::IMREAD_GRAYSCALE); cv::Ptr alg = cv::createOptFlow_DualTVL1(); cv::ocl::OpticalFlowDual_TVL1_OCL d_alg; Mat flow, show_flow; Mat flow_vec[2]; if (frame0.empty() || frame1.empty()) { useCamera = true; defaultPicturesFail = true; CvCapture* capture = 0; capture = cvCaptureFromCAM( inputName ); if (!capture) { cout << "Can't load input images" << endl; return -1; } } if (useCamera) { CvCapture* capture = 0; Mat frame, frameCopy; Mat frame0Gray, frame1Gray; Mat ptr0, ptr1; if(vdofile == "") capture = cvCaptureFromCAM( inputName ); else capture = cvCreateFileCapture(vdofile.c_str()); int c = inputName ; if(!capture) { if(vdofile == "") cout << "Capture from CAM " << c << " didn't work" << endl; else cout << "Capture from file " << vdofile << " failed" <calc(ptr0, ptr1, flow); split(flow, flow_vec); } else { oclMat d_flowx, d_flowy; d_alg(oclMat(ptr0), oclMat(ptr1), d_flowx, d_flowy); d_flowx.download(flow_vec[0]); d_flowy.download(flow_vec[1]); } if (i%2 == 1) frame1.copyTo(frameCopy); else frame0.copyTo(frameCopy); getFlowField(flow_vec[0], flow_vec[1], show_flow); imshow("PyrLK [Sparse]", show_flow); } if( waitKey( 10 ) >= 0 ) goto _cleanup_; } waitKey(0); _cleanup_: cvReleaseCapture( &capture ); } else { nocamera: oclMat d_flowx, d_flowy; for(int i = 0; i <= LOOP_NUM; i ++) { cout << "loop" << i << endl; if (i > 0) workBegin(); if (useCPU) { alg->calc(frame0, frame1, flow); split(flow, flow_vec); } else { d_alg(oclMat(frame0), oclMat(frame1), d_flowx, d_flowy); d_flowx.download(flow_vec[0]); d_flowy.download(flow_vec[1]); } if (i > 0 && i <= LOOP_NUM) workEnd(); if (i == LOOP_NUM) { if (useCPU) cout << "average CPU time (noCamera) : "; else cout << "average GPU time (noCamera) : "; cout << getTime() / LOOP_NUM << " ms" << endl; getFlowField(flow_vec[0], flow_vec[1], show_flow); imshow("PyrLK [Sparse]", show_flow); imwrite(outpath, show_flow); } } } waitKey(); return 0; }