// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2018, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "precomp.hpp" #include "opencv2/objdetect.hpp" #include "opencv2/calib3d.hpp" #include #ifdef HAVE_QUIRC #include "quirc.h" #endif #include #include #include #include #include namespace cv { using std::vector; using std::pair; static bool checkQRInputImage(InputArray img, Mat& gray) { CV_Assert(!img.empty()); CV_CheckDepthEQ(img.depth(), CV_8U, ""); if (img.cols() <= 20 || img.rows() <= 20) { return false; // image data is not enough for providing reliable results } int incn = img.channels(); CV_Check(incn, incn == 1 || incn == 3 || incn == 4, ""); if (incn == 3 || incn == 4) { cvtColor(img, gray, COLOR_BGR2GRAY); } else { gray = img.getMat(); } return true; } static void updatePointsResult(OutputArray points_, const vector& points) { if (points_.needed()) { int N = int(points.size() / 4); if (N > 0) { Mat m_p(N, 4, CV_32FC2, (void*)&points[0]); int points_type = points_.fixedType() ? points_.type() : CV_32FC2; m_p.reshape(2, points_.rows()).convertTo(points_, points_type); // Mat layout: N x 4 x 2cn } else { points_.release(); } } } static Point2f intersectionLines(Point2f a1, Point2f a2, Point2f b1, Point2f b2) { const float divisor = (a1.x - a2.x) * (b1.y - b2.y) - (a1.y - a2.y) * (b1.x - b2.x); const float eps = 0.001f; if (abs(divisor) < eps) return a2; Point2f result_square_angle( ((a1.x * a2.y - a1.y * a2.x) * (b1.x - b2.x) - (b1.x * b2.y - b1.y * b2.x) * (a1.x - a2.x)) / divisor, ((a1.x * a2.y - a1.y * a2.x) * (b1.y - b2.y) - (b1.x * b2.y - b1.y * b2.x) * (a1.y - a2.y)) / divisor ); return result_square_angle; } // / | b // / | // / | // a/ | c static inline double getCosVectors(Point2f a, Point2f b, Point2f c) { return ((a - b).x * (c - b).x + (a - b).y * (c - b).y) / (norm(a - b) * norm(c - b)); } static bool arePointsNearest(Point2f a, Point2f b, float delta = 0.0) { if ((abs(a.x - b.x) < delta) && (abs(a.y - b.y) < delta)) return true; else return false; } class QRDetect { public: void init(const Mat& src, double eps_vertical_ = 0.2, double eps_horizontal_ = 0.1); bool localization(); bool computeTransformationPoints(); Mat getBinBarcode() { return bin_barcode; } Mat getStraightBarcode() { return straight_barcode; } vector getTransformationPoints() { return transformation_points; } protected: vector searchHorizontalLines(); vector separateVerticalLines(const vector &list_lines); vector extractVerticalLines(const vector &list_lines, double eps); void fixationPoints(vector &local_point); vector getQuadrilateral(vector angle_list); bool testByPassRoute(vector hull, int start, int finish); Mat barcode, bin_barcode, resized_barcode, resized_bin_barcode, straight_barcode; vector localization_points, transformation_points; double eps_vertical, eps_horizontal, coeff_expansion; enum resize_direction { ZOOMING, SHRINKING, UNCHANGED } purpose; }; void QRDetect::init(const Mat& src, double eps_vertical_, double eps_horizontal_) { CV_TRACE_FUNCTION(); CV_Assert(!src.empty()); barcode = src.clone(); const double min_side = std::min(src.size().width, src.size().height); if (min_side < 512.0) { purpose = ZOOMING; coeff_expansion = 512.0 / min_side; const int width = cvRound(src.size().width * coeff_expansion); const int height = cvRound(src.size().height * coeff_expansion); Size new_size(width, height); resize(src, barcode, new_size, 0, 0, INTER_LINEAR_EXACT); } else if (min_side > 512.0) { purpose = SHRINKING; coeff_expansion = min_side / 512.0; const int width = cvRound(src.size().width / coeff_expansion); const int height = cvRound(src.size().height / coeff_expansion); Size new_size(width, height); resize(src, resized_barcode, new_size, 0, 0, INTER_AREA); } else { purpose = UNCHANGED; coeff_expansion = 1.0; } eps_vertical = eps_vertical_; eps_horizontal = eps_horizontal_; if (!barcode.empty()) adaptiveThreshold(barcode, bin_barcode, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2); else bin_barcode.release(); if (!resized_barcode.empty()) adaptiveThreshold(resized_barcode, resized_bin_barcode, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2); else resized_bin_barcode.release(); } vector QRDetect::searchHorizontalLines() { CV_TRACE_FUNCTION(); vector result; const int height_bin_barcode = bin_barcode.rows; const int width_bin_barcode = bin_barcode.cols; const size_t test_lines_size = 5; double test_lines[test_lines_size]; vector pixels_position; for (int y = 0; y < height_bin_barcode; y++) { pixels_position.clear(); const uint8_t *bin_barcode_row = bin_barcode.ptr(y); int pos = 0; for (; pos < width_bin_barcode; pos++) { if (bin_barcode_row[pos] == 0) break; } if (pos == width_bin_barcode) { continue; } pixels_position.push_back(pos); pixels_position.push_back(pos); pixels_position.push_back(pos); uint8_t future_pixel = 255; for (int x = pos; x < width_bin_barcode; x++) { if (bin_barcode_row[x] == future_pixel) { future_pixel = static_cast(~future_pixel); pixels_position.push_back(x); } } pixels_position.push_back(width_bin_barcode - 1); for (size_t i = 2; i < pixels_position.size() - 3; i+=2) { test_lines[0] = static_cast(pixels_position[i - 1] - pixels_position[i - 2]); test_lines[1] = static_cast(pixels_position[i ] - pixels_position[i - 1]); test_lines[2] = static_cast(pixels_position[i + 1] - pixels_position[i ]); test_lines[3] = static_cast(pixels_position[i + 2] - pixels_position[i + 1]); test_lines[4] = static_cast(pixels_position[i + 3] - pixels_position[i + 2]); double length = 0.0, weight = 0.0; // TODO avoid 'double' calculations for (size_t j = 0; j < test_lines_size; j++) { length += test_lines[j]; } if (length == 0) { continue; } for (size_t j = 0; j < test_lines_size; j++) { if (j != 2) { weight += fabs((test_lines[j] / length) - 1.0/7.0); } else { weight += fabs((test_lines[j] / length) - 3.0/7.0); } } if (weight < eps_vertical) { Vec3d line; line[0] = static_cast(pixels_position[i - 2]); line[1] = y; line[2] = length; result.push_back(line); } } } return result; } vector QRDetect::separateVerticalLines(const vector &list_lines) { CV_TRACE_FUNCTION(); const double min_dist_between_points = 10.0; const double max_ratio = 1.0; for (int coeff_epsilon_i = 1; coeff_epsilon_i < 101; ++coeff_epsilon_i) { const float coeff_epsilon = coeff_epsilon_i * 0.1f; vector point2f_result = extractVerticalLines(list_lines, eps_horizontal * coeff_epsilon); if (!point2f_result.empty()) { vector centers; Mat labels; double compactness = kmeans( point2f_result, 3, labels, TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1), 3, KMEANS_PP_CENTERS, centers); double min_dist = std::numeric_limits::max(); for (size_t i = 0; i < centers.size(); i++) { double dist = norm(centers[i] - centers[(i+1) % centers.size()]); if (dist < min_dist) { min_dist = dist; } } if (min_dist < min_dist_between_points) { continue; } double mean_compactness = compactness / point2f_result.size(); double ratio = mean_compactness / min_dist; if (ratio < max_ratio) { return point2f_result; } } } return vector(); // nothing } vector QRDetect::extractVerticalLines(const vector &list_lines, double eps) { CV_TRACE_FUNCTION(); vector result; vector test_lines; test_lines.reserve(6); for (size_t pnt = 0; pnt < list_lines.size(); pnt++) { const int x = cvRound(list_lines[pnt][0] + list_lines[pnt][2] * 0.5); const int y = cvRound(list_lines[pnt][1]); // --------------- Search vertical up-lines --------------- // test_lines.clear(); uint8_t future_pixel_up = 255; int temp_length_up = 0; for (int j = y; j < bin_barcode.rows - 1; j++) { uint8_t next_pixel = bin_barcode.ptr(j + 1)[x]; temp_length_up++; if (next_pixel == future_pixel_up) { future_pixel_up = static_cast(~future_pixel_up); test_lines.push_back(temp_length_up); temp_length_up = 0; if (test_lines.size() == 3) break; } } // --------------- Search vertical down-lines --------------- // int temp_length_down = 0; uint8_t future_pixel_down = 255; for (int j = y; j >= 1; j--) { uint8_t next_pixel = bin_barcode.ptr(j - 1)[x]; temp_length_down++; if (next_pixel == future_pixel_down) { future_pixel_down = static_cast(~future_pixel_down); test_lines.push_back(temp_length_down); temp_length_down = 0; if (test_lines.size() == 6) break; } } // --------------- Compute vertical lines --------------- // if (test_lines.size() == 6) { double length = 0.0, weight = 0.0; // TODO avoid 'double' calculations for (size_t i = 0; i < test_lines.size(); i++) length += test_lines[i]; CV_Assert(length > 0); for (size_t i = 0; i < test_lines.size(); i++) { if (i % 3 != 0) { weight += fabs((test_lines[i] / length) - 1.0/ 7.0); } else { weight += fabs((test_lines[i] / length) - 3.0/14.0); } } if (weight < eps) { result.push_back(list_lines[pnt]); } } } vector point2f_result; if (result.size() > 2) { for (size_t i = 0; i < result.size(); i++) { point2f_result.push_back( Point2f(static_cast(result[i][0] + result[i][2] * 0.5), static_cast(result[i][1]))); } } return point2f_result; } void QRDetect::fixationPoints(vector &local_point) { CV_TRACE_FUNCTION(); double cos_angles[3], norm_triangl[3]; norm_triangl[0] = norm(local_point[1] - local_point[2]); norm_triangl[1] = norm(local_point[0] - local_point[2]); norm_triangl[2] = norm(local_point[1] - local_point[0]); cos_angles[0] = (norm_triangl[1] * norm_triangl[1] + norm_triangl[2] * norm_triangl[2] - norm_triangl[0] * norm_triangl[0]) / (2 * norm_triangl[1] * norm_triangl[2]); cos_angles[1] = (norm_triangl[0] * norm_triangl[0] + norm_triangl[2] * norm_triangl[2] - norm_triangl[1] * norm_triangl[1]) / (2 * norm_triangl[0] * norm_triangl[2]); cos_angles[2] = (norm_triangl[0] * norm_triangl[0] + norm_triangl[1] * norm_triangl[1] - norm_triangl[2] * norm_triangl[2]) / (2 * norm_triangl[0] * norm_triangl[1]); const double angle_barrier = 0.85; if (fabs(cos_angles[0]) > angle_barrier || fabs(cos_angles[1]) > angle_barrier || fabs(cos_angles[2]) > angle_barrier) { local_point.clear(); return; } size_t i_min_cos = (cos_angles[0] < cos_angles[1] && cos_angles[0] < cos_angles[2]) ? 0 : (cos_angles[1] < cos_angles[0] && cos_angles[1] < cos_angles[2]) ? 1 : 2; size_t index_max = 0; double max_area = std::numeric_limits::min(); for (size_t i = 0; i < local_point.size(); i++) { const size_t current_index = i % 3; const size_t left_index = (i + 1) % 3; const size_t right_index = (i + 2) % 3; const Point2f current_point(local_point[current_index]), left_point(local_point[left_index]), right_point(local_point[right_index]), central_point(intersectionLines(current_point, Point2f(static_cast((local_point[left_index].x + local_point[right_index].x) * 0.5), static_cast((local_point[left_index].y + local_point[right_index].y) * 0.5)), Point2f(0, static_cast(bin_barcode.rows - 1)), Point2f(static_cast(bin_barcode.cols - 1), static_cast(bin_barcode.rows - 1)))); vector list_area_pnt; list_area_pnt.push_back(current_point); vector list_line_iter; list_line_iter.push_back(LineIterator(bin_barcode, current_point, left_point)); list_line_iter.push_back(LineIterator(bin_barcode, current_point, central_point)); list_line_iter.push_back(LineIterator(bin_barcode, current_point, right_point)); for (size_t k = 0; k < list_line_iter.size(); k++) { LineIterator& li = list_line_iter[k]; uint8_t future_pixel = 255, count_index = 0; for(int j = 0; j < li.count; j++, ++li) { const Point p = li.pos(); if (p.x >= bin_barcode.cols || p.y >= bin_barcode.rows) { break; } const uint8_t value = bin_barcode.at(p); if (value == future_pixel) { future_pixel = static_cast(~future_pixel); count_index++; if (count_index == 3) { list_area_pnt.push_back(p); break; } } } } const double temp_check_area = contourArea(list_area_pnt); if (temp_check_area > max_area) { index_max = current_index; max_area = temp_check_area; } } if (index_max == i_min_cos) { std::swap(local_point[0], local_point[index_max]); } else { local_point.clear(); return; } const Point2f rpt = local_point[0], bpt = local_point[1], gpt = local_point[2]; Matx22f m(rpt.x - bpt.x, rpt.y - bpt.y, gpt.x - rpt.x, gpt.y - rpt.y); if( determinant(m) > 0 ) { std::swap(local_point[1], local_point[2]); } } bool QRDetect::localization() { CV_TRACE_FUNCTION(); Point2f begin, end; vector list_lines_x = searchHorizontalLines(); if( list_lines_x.empty() ) { return false; } vector list_lines_y = separateVerticalLines(list_lines_x); if( list_lines_y.empty() ) { return false; } Mat labels; kmeans(list_lines_y, 3, labels, TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1), 3, KMEANS_PP_CENTERS, localization_points); fixationPoints(localization_points); bool square_flag = false, local_points_flag = false; double triangle_sides[3]; double triangle_perim, square_area, img_square_area; if (localization_points.size() == 3) { triangle_sides[0] = norm(localization_points[0] - localization_points[1]); triangle_sides[1] = norm(localization_points[1] - localization_points[2]); triangle_sides[2] = norm(localization_points[2] - localization_points[0]); triangle_perim = (triangle_sides[0] + triangle_sides[1] + triangle_sides[2]) / 2; square_area = sqrt((triangle_perim * (triangle_perim - triangle_sides[0]) * (triangle_perim - triangle_sides[1]) * (triangle_perim - triangle_sides[2]))) * 2; img_square_area = bin_barcode.cols * bin_barcode.rows; if (square_area > (img_square_area * 0.2)) { square_flag = true; } } else { local_points_flag = true; } if ((square_flag || local_points_flag) && purpose == SHRINKING) { localization_points.clear(); bin_barcode = resized_bin_barcode.clone(); list_lines_x = searchHorizontalLines(); if( list_lines_x.empty() ) { return false; } list_lines_y = separateVerticalLines(list_lines_x); if( list_lines_y.empty() ) { return false; } kmeans(list_lines_y, 3, labels, TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1), 3, KMEANS_PP_CENTERS, localization_points); fixationPoints(localization_points); if (localization_points.size() != 3) { return false; } const int width = cvRound(bin_barcode.size().width * coeff_expansion); const int height = cvRound(bin_barcode.size().height * coeff_expansion); Size new_size(width, height); Mat intermediate; resize(bin_barcode, intermediate, new_size, 0, 0, INTER_LINEAR_EXACT); bin_barcode = intermediate.clone(); for (size_t i = 0; i < localization_points.size(); i++) { localization_points[i] *= coeff_expansion; } } if (purpose == ZOOMING) { const int width = cvRound(bin_barcode.size().width / coeff_expansion); const int height = cvRound(bin_barcode.size().height / coeff_expansion); Size new_size(width, height); Mat intermediate; resize(bin_barcode, intermediate, new_size, 0, 0, INTER_LINEAR_EXACT); bin_barcode = intermediate.clone(); for (size_t i = 0; i < localization_points.size(); i++) { localization_points[i] /= coeff_expansion; } } for (size_t i = 0; i < localization_points.size(); i++) { for (size_t j = i + 1; j < localization_points.size(); j++) { if (norm(localization_points[i] - localization_points[j]) < 10) { return false; } } } return true; } bool QRDetect::computeTransformationPoints() { CV_TRACE_FUNCTION(); if (localization_points.size() != 3) { return false; } vector locations, non_zero_elem[3], newHull; vector new_non_zero_elem[3]; for (size_t i = 0; i < 3; i++) { Mat mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1); uint8_t next_pixel, future_pixel = 255; int count_test_lines = 0, index_c = max(0, min(cvRound(localization_points[i].x), bin_barcode.cols - 1)); const int index_r = max(0, min(cvRound(localization_points[i].y), bin_barcode.rows - 1)); for (; index_c < bin_barcode.cols - 1; index_c++) { next_pixel = bin_barcode.ptr(index_r)[index_c + 1]; if (next_pixel == future_pixel) { future_pixel = static_cast(~future_pixel); count_test_lines++; if (count_test_lines == 2) { floodFill(bin_barcode, mask, Point(index_c + 1, index_r), 255, 0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY); break; } } } Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1)); findNonZero(mask_roi, non_zero_elem[i]); newHull.insert(newHull.end(), non_zero_elem[i].begin(), non_zero_elem[i].end()); } convexHull(newHull, locations); for (size_t i = 0; i < locations.size(); i++) { for (size_t j = 0; j < 3; j++) { for (size_t k = 0; k < non_zero_elem[j].size(); k++) { if (locations[i] == non_zero_elem[j][k]) { new_non_zero_elem[j].push_back(locations[i]); } } } } double pentagon_diag_norm = -1; Point2f down_left_edge_point, up_right_edge_point, up_left_edge_point; for (size_t i = 0; i < new_non_zero_elem[1].size(); i++) { for (size_t j = 0; j < new_non_zero_elem[2].size(); j++) { double temp_norm = norm(new_non_zero_elem[1][i] - new_non_zero_elem[2][j]); if (temp_norm > pentagon_diag_norm) { down_left_edge_point = new_non_zero_elem[1][i]; up_right_edge_point = new_non_zero_elem[2][j]; pentagon_diag_norm = temp_norm; } } } if (down_left_edge_point == Point2f(0, 0) || up_right_edge_point == Point2f(0, 0) || new_non_zero_elem[0].size() == 0) { return false; } double max_area = -1; up_left_edge_point = new_non_zero_elem[0][0]; for (size_t i = 0; i < new_non_zero_elem[0].size(); i++) { vector list_edge_points; list_edge_points.push_back(new_non_zero_elem[0][i]); list_edge_points.push_back(down_left_edge_point); list_edge_points.push_back(up_right_edge_point); double temp_area = fabs(contourArea(list_edge_points)); if (max_area < temp_area) { up_left_edge_point = new_non_zero_elem[0][i]; max_area = temp_area; } } Point2f down_max_delta_point, up_max_delta_point; double norm_down_max_delta = -1, norm_up_max_delta = -1; for (size_t i = 0; i < new_non_zero_elem[1].size(); i++) { double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[1][i]) + norm(down_left_edge_point - new_non_zero_elem[1][i]); if (norm_down_max_delta < temp_norm_delta) { down_max_delta_point = new_non_zero_elem[1][i]; norm_down_max_delta = temp_norm_delta; } } for (size_t i = 0; i < new_non_zero_elem[2].size(); i++) { double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[2][i]) + norm(up_right_edge_point - new_non_zero_elem[2][i]); if (norm_up_max_delta < temp_norm_delta) { up_max_delta_point = new_non_zero_elem[2][i]; norm_up_max_delta = temp_norm_delta; } } transformation_points.push_back(down_left_edge_point); transformation_points.push_back(up_left_edge_point); transformation_points.push_back(up_right_edge_point); transformation_points.push_back( intersectionLines(down_left_edge_point, down_max_delta_point, up_right_edge_point, up_max_delta_point)); vector quadrilateral = getQuadrilateral(transformation_points); transformation_points = quadrilateral; int width = bin_barcode.size().width; int height = bin_barcode.size().height; for (size_t i = 0; i < transformation_points.size(); i++) { if ((cvRound(transformation_points[i].x) > width) || (cvRound(transformation_points[i].y) > height)) { return false; } } return true; } // test function (if true then ------> else <------ ) bool QRDetect::testByPassRoute(vector hull, int start, int finish) { CV_TRACE_FUNCTION(); int index_hull = start, next_index_hull, hull_size = (int)hull.size(); double test_length[2] = { 0.0, 0.0 }; do { next_index_hull = index_hull + 1; if (next_index_hull == hull_size) { next_index_hull = 0; } test_length[0] += norm(hull[index_hull] - hull[next_index_hull]); index_hull = next_index_hull; } while(index_hull != finish); index_hull = start; do { next_index_hull = index_hull - 1; if (next_index_hull == -1) { next_index_hull = hull_size - 1; } test_length[1] += norm(hull[index_hull] - hull[next_index_hull]); index_hull = next_index_hull; } while(index_hull != finish); if (test_length[0] < test_length[1]) { return true; } else { return false; } } vector QRDetect::getQuadrilateral(vector angle_list) { CV_TRACE_FUNCTION(); size_t angle_size = angle_list.size(); uint8_t value, mask_value; Mat mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1); Mat fill_bin_barcode = bin_barcode.clone(); for (size_t i = 0; i < angle_size; i++) { LineIterator line_iter(bin_barcode, angle_list[ i % angle_size], angle_list[(i + 1) % angle_size]); for(int j = 0; j < line_iter.count; j++, ++line_iter) { Point p = line_iter.pos(); value = bin_barcode.at(p); mask_value = mask.at(p + Point(1, 1)); if (value == 0 && mask_value == 0) { floodFill(fill_bin_barcode, mask, p, 255, 0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY); } } } vector locations; Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1)); findNonZero(mask_roi, locations); for (size_t i = 0; i < angle_list.size(); i++) { int x = cvRound(angle_list[i].x); int y = cvRound(angle_list[i].y); locations.push_back(Point(x, y)); } vector integer_hull; convexHull(locations, integer_hull); int hull_size = (int)integer_hull.size(); vector hull(hull_size); for (int i = 0; i < hull_size; i++) { float x = saturate_cast(integer_hull[i].x); float y = saturate_cast(integer_hull[i].y); hull[i] = Point2f(x, y); } const double experimental_area = fabs(contourArea(hull)); vector result_hull_point(angle_size); double min_norm; for (size_t i = 0; i < angle_size; i++) { min_norm = std::numeric_limits::max(); Point closest_pnt; for (int j = 0; j < hull_size; j++) { double temp_norm = norm(hull[j] - angle_list[i]); if (min_norm > temp_norm) { min_norm = temp_norm; closest_pnt = hull[j]; } } result_hull_point[i] = closest_pnt; } int start_line[2] = { 0, 0 }, finish_line[2] = { 0, 0 }, unstable_pnt = 0; for (int i = 0; i < hull_size; i++) { if (result_hull_point[2] == hull[i]) { start_line[0] = i; } if (result_hull_point[1] == hull[i]) { finish_line[0] = start_line[1] = i; } if (result_hull_point[0] == hull[i]) { finish_line[1] = i; } if (result_hull_point[3] == hull[i]) { unstable_pnt = i; } } int index_hull, extra_index_hull, next_index_hull, extra_next_index_hull; Point result_side_begin[4], result_side_end[4]; bool bypass_orientation = testByPassRoute(hull, start_line[0], finish_line[0]); min_norm = std::numeric_limits::max(); index_hull = start_line[0]; do { if (bypass_orientation) { next_index_hull = index_hull + 1; } else { next_index_hull = index_hull - 1; } if (next_index_hull == hull_size) { next_index_hull = 0; } if (next_index_hull == -1) { next_index_hull = hull_size - 1; } Point angle_closest_pnt = norm(hull[index_hull] - angle_list[1]) > norm(hull[index_hull] - angle_list[2]) ? angle_list[2] : angle_list[1]; Point intrsc_line_hull = intersectionLines(hull[index_hull], hull[next_index_hull], angle_list[1], angle_list[2]); double temp_norm = getCosVectors(hull[index_hull], intrsc_line_hull, angle_closest_pnt); if (min_norm > temp_norm && norm(hull[index_hull] - hull[next_index_hull]) > norm(angle_list[1] - angle_list[2]) * 0.1) { min_norm = temp_norm; result_side_begin[0] = hull[index_hull]; result_side_end[0] = hull[next_index_hull]; } index_hull = next_index_hull; } while(index_hull != finish_line[0]); if (min_norm == std::numeric_limits::max()) { result_side_begin[0] = angle_list[1]; result_side_end[0] = angle_list[2]; } min_norm = std::numeric_limits::max(); index_hull = start_line[1]; bypass_orientation = testByPassRoute(hull, start_line[1], finish_line[1]); do { if (bypass_orientation) { next_index_hull = index_hull + 1; } else { next_index_hull = index_hull - 1; } if (next_index_hull == hull_size) { next_index_hull = 0; } if (next_index_hull == -1) { next_index_hull = hull_size - 1; } Point angle_closest_pnt = norm(hull[index_hull] - angle_list[0]) > norm(hull[index_hull] - angle_list[1]) ? angle_list[1] : angle_list[0]; Point intrsc_line_hull = intersectionLines(hull[index_hull], hull[next_index_hull], angle_list[0], angle_list[1]); double temp_norm = getCosVectors(hull[index_hull], intrsc_line_hull, angle_closest_pnt); if (min_norm > temp_norm && norm(hull[index_hull] - hull[next_index_hull]) > norm(angle_list[0] - angle_list[1]) * 0.05) { min_norm = temp_norm; result_side_begin[1] = hull[index_hull]; result_side_end[1] = hull[next_index_hull]; } index_hull = next_index_hull; } while(index_hull != finish_line[1]); if (min_norm == std::numeric_limits::max()) { result_side_begin[1] = angle_list[0]; result_side_end[1] = angle_list[1]; } bypass_orientation = testByPassRoute(hull, start_line[0], unstable_pnt); const bool extra_bypass_orientation = testByPassRoute(hull, finish_line[1], unstable_pnt); vector result_angle_list(4), test_result_angle_list(4); double min_diff_area = std::numeric_limits::max(); index_hull = start_line[0]; const double standart_norm = std::max( norm(result_side_begin[0] - result_side_end[0]), norm(result_side_begin[1] - result_side_end[1])); do { if (bypass_orientation) { next_index_hull = index_hull + 1; } else { next_index_hull = index_hull - 1; } if (next_index_hull == hull_size) { next_index_hull = 0; } if (next_index_hull == -1) { next_index_hull = hull_size - 1; } if (norm(hull[index_hull] - hull[next_index_hull]) < standart_norm * 0.1) { index_hull = next_index_hull; continue; } extra_index_hull = finish_line[1]; do { if (extra_bypass_orientation) { extra_next_index_hull = extra_index_hull + 1; } else { extra_next_index_hull = extra_index_hull - 1; } if (extra_next_index_hull == hull_size) { extra_next_index_hull = 0; } if (extra_next_index_hull == -1) { extra_next_index_hull = hull_size - 1; } if (norm(hull[extra_index_hull] - hull[extra_next_index_hull]) < standart_norm * 0.1) { extra_index_hull = extra_next_index_hull; continue; } test_result_angle_list[0] = intersectionLines(result_side_begin[0], result_side_end[0], result_side_begin[1], result_side_end[1]); test_result_angle_list[1] = intersectionLines(result_side_begin[1], result_side_end[1], hull[extra_index_hull], hull[extra_next_index_hull]); test_result_angle_list[2] = intersectionLines(hull[extra_index_hull], hull[extra_next_index_hull], hull[index_hull], hull[next_index_hull]); test_result_angle_list[3] = intersectionLines(hull[index_hull], hull[next_index_hull], result_side_begin[0], result_side_end[0]); const double test_diff_area = fabs(fabs(contourArea(test_result_angle_list)) - experimental_area); if (min_diff_area > test_diff_area) { min_diff_area = test_diff_area; for (size_t i = 0; i < test_result_angle_list.size(); i++) { result_angle_list[i] = test_result_angle_list[i]; } } extra_index_hull = extra_next_index_hull; } while(extra_index_hull != unstable_pnt); index_hull = next_index_hull; } while(index_hull != unstable_pnt); // check label points if (norm(result_angle_list[0] - angle_list[1]) > 2) { result_angle_list[0] = angle_list[1]; } if (norm(result_angle_list[1] - angle_list[0]) > 2) { result_angle_list[1] = angle_list[0]; } if (norm(result_angle_list[3] - angle_list[2]) > 2) { result_angle_list[3] = angle_list[2]; } // check calculation point if (norm(result_angle_list[2] - angle_list[3]) > (norm(result_angle_list[0] - result_angle_list[1]) + norm(result_angle_list[0] - result_angle_list[3])) * 0.5 ) { result_angle_list[2] = angle_list[3]; } return result_angle_list; } struct QRCodeDetectorBase::Impl { virtual ~Impl() {} virtual bool detect(InputArray img, OutputArray points) const = 0; virtual std::string decode(InputArray img, InputArray points, OutputArray straight_qrcode) const = 0; virtual std::string detectAndDecode(InputArray img, OutputArray points, OutputArray straight_qrcode) const = 0; virtual bool detectMulti(InputArray img, OutputArray points) const = 0; virtual bool decodeMulti(InputArray img, InputArray points, std::vector& decoded_info, OutputArrayOfArrays straight_qrcode) const = 0; virtual bool detectAndDecodeMulti(InputArray img, std::vector& decoded_info, OutputArray points, OutputArrayOfArrays straight_qrcode) const = 0; }; QRCodeDetectorBase::QRCodeDetectorBase() {} bool QRCodeDetectorBase::detect(InputArray img, OutputArray points) const { CV_Assert(p); return p->detect(img, points); } std::string QRCodeDetectorBase::decode(InputArray img, InputArray points, OutputArray straight_qrcode) const { CV_Assert(p); return p->decode(img, points, straight_qrcode); } std::string QRCodeDetectorBase::detectAndDecode(InputArray img, OutputArray points, OutputArray straight_qrcode) const { CV_Assert(p); return p->detectAndDecode(img, points, straight_qrcode); } bool QRCodeDetectorBase::detectMulti(InputArray img, OutputArray points) const { CV_Assert(p); return p->detectMulti(img, points); } bool QRCodeDetectorBase::decodeMulti(InputArray img, InputArray points, std::vector& decoded_info, OutputArrayOfArrays straight_qrcode) const { CV_Assert(p); return p->decodeMulti(img, points, decoded_info, straight_qrcode); } bool QRCodeDetectorBase::detectAndDecodeMulti(InputArray img, std::vector& decoded_info, OutputArray points, OutputArrayOfArrays straight_qrcode) const { CV_Assert(p); return p->detectAndDecodeMulti(img, decoded_info, points, straight_qrcode); } struct ImplContour : public QRCodeDetectorBase::Impl { public: ImplContour(): epsX(0.2), epsY(0.1) {} double epsX, epsY; mutable vector> alignmentMarkers; mutable vector updateQrCorners; bool useAlignmentMarkers = true; bool detect(InputArray in, OutputArray points) const override; std::string decode(InputArray img, InputArray points, OutputArray straight_qrcode) const override; std::string detectAndDecode(InputArray img, OutputArray points, OutputArray straight_qrcode) const override; bool detectMulti(InputArray img, OutputArray points) const override; bool decodeMulti(InputArray img, InputArray points, std::vector& decoded_info, OutputArrayOfArrays straight_qrcode) const override; bool detectAndDecodeMulti(InputArray img, std::vector& decoded_info, OutputArray points, OutputArrayOfArrays straight_qrcode) const override; String decodeCurved(InputArray in, InputArray points, OutputArray straight_qrcode); std::string detectAndDecodeCurved(InputArray in, OutputArray points, OutputArray straight_qrcode); }; QRCodeDetector::QRCodeDetector() { p = makePtr(); } QRCodeDetector& QRCodeDetector::setEpsX(double epsX) { std::dynamic_pointer_cast(p)->epsX = epsX; return *this; } QRCodeDetector& QRCodeDetector::setEpsY(double epsY) { std::dynamic_pointer_cast(p)->epsY = epsY; return *this; } bool ImplContour::detect(InputArray in, OutputArray points) const { Mat inarr; if (!checkQRInputImage(in, inarr)) return false; QRDetect qrdet; qrdet.init(inarr, epsX, epsY); if (!qrdet.localization()) { return false; } if (!qrdet.computeTransformationPoints()) { return false; } vector pnts2f = qrdet.getTransformationPoints(); updatePointsResult(points, pnts2f); return true; } class QRDecode { public: QRDecode(bool useAlignmentMarkers); void init(const Mat &src, const vector &points); Mat getIntermediateBarcode() { return intermediate; } Mat getStraightBarcode() { return straight; } size_t getVersion() { return version; } std::string getDecodeInformation() { return result_info; } bool straightDecodingProcess(); bool curvedDecodingProcess(); vector alignment_coords; float coeff_expansion = 1.f; vector getOriginalPoints() {return original_points;} bool useAlignmentMarkers; protected: double getNumModules(); Mat getHomography() { CV_TRACE_FUNCTION(); vector perspective_points = {{0.f, 0.f}, {test_perspective_size, 0.f}, {test_perspective_size, test_perspective_size}, {0.f, test_perspective_size}}; vector pts = original_points; return findHomography(pts, perspective_points); } bool updatePerspective(const Mat& H); bool versionDefinition(); void detectAlignment(); bool samplingForVersion(); bool decodingProcess(); inline double pointPosition(Point2f a, Point2f b , Point2f c); float distancePointToLine(Point2f a, Point2f b , Point2f c); void getPointsInsideQRCode(const vector &angle_list); bool computeClosestPoints(const vector &result_integer_hull); bool computeSidesPoints(const vector &result_integer_hull); vector getPointsNearUnstablePoint(const vector &side, int start, int end, int step); bool findAndAddStablePoint(); bool findIndexesCurvedSides(); bool findIncompleteIndexesCurvedSides(); Mat getPatternsMask(); Point findClosestZeroPoint(Point2f original_point); bool findPatternsContours(vector > &patterns_contours); bool findPatternsVerticesPoints(vector > &patterns_vertices_points); bool findTempPatternsAddingPoints(vector > > &temp_patterns_add_points); bool computePatternsAddingPoints(std::map > &patterns_add_points); bool addPointsToSides(); void completeAndSortSides(); vector > computeSpline(const vector &x_arr, const vector &y_arr); bool createSpline(vector > &spline_lines); bool divideIntoEvenSegments(vector > &segments_points); bool straightenQRCodeInParts(); bool preparingCurvedQRCodes(); const static int NUM_SIDES = 2; Mat original, bin_barcode, no_border_intermediate, intermediate, straight, curved_to_straight, test_image; vector original_points; Mat homography; vector original_curved_points; vector qrcode_locations; vector > closest_points; vector > sides_points; std::pair unstable_pair; vector curved_indexes, curved_incomplete_indexes; std::map > complete_curved_sides; std::string result_info; uint8_t version, version_size; float test_perspective_size; struct sortPairAsc { bool operator()(const std::pair &a, const std::pair &b) const { return a.second < b.second; } }; struct sortPairDesc { bool operator()(const std::pair &a, const std::pair &b) const { return a.second > b.second; } }; struct sortPointsByX { bool operator()(const Point &a, const Point &b) const { return a.x < b.x; } }; struct sortPointsByY { bool operator()(const Point &a, const Point &b) const { return a.y < b.y; } }; }; float static getMinSideLen(const vector &points) { CV_Assert(points.size() == 4ull); double res = norm(points[1]-points[0]); for (size_t i = 1ull; i < points.size(); i++) { res = min(res, norm(points[i]-points[(i+1ull) % points.size()])); } return static_cast(res); } void QRDecode::init(const Mat &src, const vector &points) { CV_TRACE_FUNCTION(); vector bbox = points; original = src.clone(); test_image = src.clone(); adaptiveThreshold(original, bin_barcode, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2); intermediate = Mat::zeros(original.size(), CV_8UC1); original_points = bbox; version = 0; version_size = 0; test_perspective_size = max(getMinSideLen(points)+1.f, 251.f); result_info = ""; } inline double QRDecode::pointPosition(Point2f a, Point2f b , Point2f c) { return (a.x - b.x) * (c.y - b.y) - (c.x - b.x) * (a.y - b.y); } float QRDecode::distancePointToLine(Point2f a, Point2f b , Point2f c) { float A, B, C, result; A = c.y - b.y; B = c.x - b.x; C = c.x * b.y - b.x * c.y; float dist = sqrt(A*A + B*B); if (dist == 0) return 0; result = abs((A * a.x - B * a.y + C)) / dist; return result; } void QRDecode::getPointsInsideQRCode(const vector &angle_list) { CV_TRACE_FUNCTION(); size_t angle_size = angle_list.size(); Mat contour_mask = Mat::zeros(bin_barcode.size(), CV_8UC1); for (size_t i = 0; i < angle_size; i++) { LineIterator line_iter(bin_barcode, angle_list[ i % angle_size], angle_list[(i + 1) % angle_size]); for(int j = 0; j < line_iter.count; j++, ++line_iter) { Point p = line_iter.pos(); contour_mask.at(p + Point(1, 1)) = 255; } } Point2f center_point = intersectionLines(angle_list[0], angle_list[2], angle_list[1], angle_list[3]); floodFill(contour_mask, center_point, 255, 0, Scalar(), Scalar(), FLOODFILL_FIXED_RANGE); vector locations; findNonZero(contour_mask, locations); Mat fill_bin_barcode = bin_barcode.clone(); Mat qrcode_mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1); uint8_t value, mask_value; for(size_t i = 0; i < locations.size(); i++) { value = bin_barcode.at(locations[i]); mask_value = qrcode_mask.at(locations[i] + Point(1, 1)); if (value == 0 && mask_value == 0) { floodFill(fill_bin_barcode, qrcode_mask, locations[i], 255, 0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY); } } Mat qrcode_mask_roi = qrcode_mask(Range(1, qrcode_mask.rows - 1), Range(1, qrcode_mask.cols - 1)); findNonZero(qrcode_mask_roi, qrcode_locations); } bool QRDecode::computeClosestPoints(const vector &result_integer_hull) { CV_TRACE_FUNCTION(); double min_norm, max_norm = 0.0; size_t idx_min = (size_t)-1; for (size_t i = 0; i < original_points.size(); i++) { min_norm = std::numeric_limits::max(); Point closest_pnt; for (size_t j = 0; j < result_integer_hull.size(); j++) { Point integer_original_point = original_points[i]; double temp_norm = norm(integer_original_point - result_integer_hull[j]); if (temp_norm < min_norm) { min_norm = temp_norm; closest_pnt = result_integer_hull[j]; idx_min = j; } } if (min_norm > max_norm) { max_norm = min_norm; unstable_pair = std::pair(i, closest_pnt); } CV_Assert(idx_min != (size_t)-1); closest_points.push_back(std::pair(idx_min, closest_pnt)); } if (closest_points.size() != 4) { return false; } return true; } bool QRDecode::computeSidesPoints(const vector &result_integer_hull) { size_t num_closest_points = closest_points.size(); vector points; for(size_t i = 0; i < num_closest_points; i++) { points.clear(); size_t start = closest_points[i].first, end = closest_points[(i + 1) % num_closest_points].first; if (start < end) { points.insert(points.end(), result_integer_hull.begin() + start, result_integer_hull.begin() + end + 1); } else { points.insert(points.end(), result_integer_hull.begin() + start, result_integer_hull.end()); points.insert(points.end(), result_integer_hull.begin(), result_integer_hull.begin() + end + 1); } if (abs(result_integer_hull[start].x - result_integer_hull[end].x) > abs(result_integer_hull[start].y - result_integer_hull[end].y)) { if (points.front().x > points.back().x) { reverse(points.begin(), points.end()); } } else { if (points.front().y > points.back().y) { reverse(points.begin(), points.end()); } } if (points.empty()) { return false; } sides_points.push_back(points); } return true; } vector QRDecode::getPointsNearUnstablePoint(const vector &side, int start, int end, int step) { vector points; Point p1, p2, p3; double max_neighbour_angle = 1.0; int index_max_angle = start + step; bool enough_points = true; if(side.size() < 3) { points.insert(points.end(), side.begin(), side.end()); return points; } const double cos_angle_threshold = -0.97; for (int i = start + step; i != end; i+= step) { p1 = side[i + step]; if (norm(p1 - side[i]) < 5) { continue; } p2 = side[i]; if (norm(p2 - side[i - step]) < 5) { continue; } p3 = side[i - step]; double neighbour_angle = getCosVectors(p1, p2, p3); neighbour_angle = floor(neighbour_angle*1000)/1000; if ((neighbour_angle <= max_neighbour_angle) && (neighbour_angle < cos_angle_threshold)) { max_neighbour_angle = neighbour_angle; index_max_angle = i; } else if (i == end - step) { enough_points = false; index_max_angle = i; } } if (enough_points) { p1 = side[index_max_angle + step]; p2 = side[index_max_angle]; p3 = side[index_max_angle - step]; points.push_back(p1); points.push_back(p2); points.push_back(p3); } else { p1 = side[index_max_angle]; p2 = side[index_max_angle - step]; points.push_back(p1); points.push_back(p2); } return points; } bool QRDecode::findAndAddStablePoint() { size_t idx_unstable_point = unstable_pair.first; Point unstable_point = unstable_pair.second; vector current_side_points, next_side_points; Point a1, a2, b1, b2; int start_current, end_current, step_current, start_next, end_next, step_next; vector::iterator it_a, it_b; vector ¤t_side = sides_points[(idx_unstable_point + 3) % 4]; vector &next_side = sides_points[idx_unstable_point]; if(current_side.size() < 2 || next_side.size() < 2) { return false; } if(arePointsNearest(unstable_point, current_side.front(), 3.0)) { start_current = (int)current_side.size() - 1; end_current = 0; step_current = -1; it_a = current_side.begin(); } else if(arePointsNearest(unstable_point, current_side.back(), 3.0)) { start_current = 0; end_current = (int)current_side.size() - 1; step_current = 1; it_a = current_side.end() - 1; } else { return false; } if(arePointsNearest(unstable_point, next_side.front(), 3.0)) { start_next = (int)next_side.size() - 1; end_next = 0; step_next = -1; it_b = next_side.begin(); } else if(arePointsNearest(unstable_point, next_side.back(), 3.0)) { start_next = 0; end_next = (int)next_side.size() - 1; step_next = 1; it_b = next_side.end() - 1; } else { return false; } current_side_points = getPointsNearUnstablePoint(current_side, start_current, end_current, step_current); next_side_points = getPointsNearUnstablePoint(next_side, start_next, end_next, step_next); if (current_side_points.size() < 2 || next_side_points.size() < 2) { return false; } a1 = current_side_points[0]; a2 = current_side_points[1]; b1 = next_side_points[0]; b2 = next_side_points[1]; if(norm(a1 - b1) < 10 && next_side_points.size() > 2) { b1 = next_side_points[1]; b2 = next_side_points[2]; } Point stable_point = intersectionLines(a1, a2, b1, b2); const double max_side = std::max(bin_barcode.size().width, bin_barcode.size().height); if ((abs(stable_point.x) > max_side) || (abs(stable_point.y) > max_side)) { return false; } while (*it_a != a1) { it_a = current_side.erase(it_a); if (it_a == current_side.end()) { it_a -= step_current; } Point point_to_remove_from_current = *it_a; if (point_to_remove_from_current.x > max_side || point_to_remove_from_current.y > max_side) { break; } } while (*it_b != b1) { it_b = next_side.erase(it_b); if (it_b == next_side.end()) { it_b -= step_next; } Point point_to_remove_from_next = *it_b; if (point_to_remove_from_next.x > max_side || point_to_remove_from_next.y > max_side) { break; } } bool add_stable_point = true; for (size_t i = 0; i < original_points.size(); i++) { if(arePointsNearest(stable_point, original_points[i], 3.0)) { add_stable_point = false; break; } } if(add_stable_point) { current_side.insert(it_a, stable_point); next_side.insert(it_b, stable_point); closest_points[unstable_pair.first].second = stable_point; } else { stable_point = original_points[unstable_pair.first]; closest_points[unstable_pair.first].second = stable_point; current_side.insert(it_a, stable_point); next_side.insert(it_b, stable_point); } return true; } bool QRDecode::findIndexesCurvedSides() { double max_dist_to_arc_side = 0.0; size_t num_closest_points = closest_points.size(); int idx_curved_current = -1, idx_curved_opposite = -1; for (size_t i = 0; i < num_closest_points; i++) { double dist_to_arc = 0.0; Point arc_start = closest_points[i].second; Point arc_end = closest_points[(i + 1) % num_closest_points].second; for (size_t j = 0; j < sides_points[i].size(); j++) { Point arc_point = sides_points[i][j]; double dist = distancePointToLine(arc_point, arc_start, arc_end); dist_to_arc += dist; } dist_to_arc /= sides_points[i].size(); if (dist_to_arc > max_dist_to_arc_side) { max_dist_to_arc_side = dist_to_arc; idx_curved_current = (int)i; idx_curved_opposite = (int)(i + 2) % num_closest_points; } } if (idx_curved_current == -1 || idx_curved_opposite == -1) { return false; } curved_indexes.push_back(idx_curved_current); curved_indexes.push_back(idx_curved_opposite); return true; } bool QRDecode::findIncompleteIndexesCurvedSides() { int num_closest_points = (int)closest_points.size(); for (int i = 0; i < NUM_SIDES; i++) { int idx_side = curved_indexes[i]; int side_size = (int)sides_points[idx_side].size(); double max_norm = norm(closest_points[idx_side].second - closest_points[(idx_side + 1) % num_closest_points].second); double real_max_norm = 0; for (int j = 0; j < side_size - 1; j++) { double temp_norm = norm(sides_points[idx_side][j] - sides_points[idx_side][j + 1]); if (temp_norm > real_max_norm) { real_max_norm = temp_norm; } } if (real_max_norm > (0.5 * max_norm)) { curved_incomplete_indexes.push_back(curved_indexes[i]); } } if (curved_incomplete_indexes.size() == 0) { return false; } return true; } Point QRDecode::findClosestZeroPoint(Point2f original_point) { int orig_x = static_cast(original_point.x); int orig_y = static_cast(original_point.y); uint8_t value; Point zero_point; const int step = 2; for (int i = orig_x - step; i >= 0 && i <= orig_x + step; i++) { for (int j = orig_y - step; j >= 0 && j <= orig_y + step; j++) { Point p(i, j); value = bin_barcode.at(p); if (value == 0) zero_point = p; } } return zero_point; } Mat QRDecode::getPatternsMask() { Mat mask(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1, Scalar(0)); Mat patterns_mask(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1, Scalar(0)); Mat fill_bin_barcode = bin_barcode.clone(); for (size_t i = 0; i < original_points.size(); i++) { if (i == 2) continue; Point p = findClosestZeroPoint(original_points[i]); floodFill(fill_bin_barcode, mask, p, 255, 0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY); patterns_mask += mask; } Mat mask_roi = patterns_mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1)); return mask_roi; } bool QRDecode::findPatternsContours(vector > &patterns_contours) { Mat patterns_mask = getPatternsMask(); findContours(patterns_mask, patterns_contours, RETR_EXTERNAL, CHAIN_APPROX_NONE, Point(0, 0)); if (patterns_contours.size() != 3) { return false; } return true; } bool QRDecode::findPatternsVerticesPoints(vector > &patterns_vertices_points) { vector > patterns_contours; if(!findPatternsContours(patterns_contours)) { return false; } const int num_vertices = 4; for(size_t i = 0; i < patterns_contours.size(); i++) { vector convexhull_contours, new_convexhull_contours; convexHull(patterns_contours[i], convexhull_contours); size_t number_pnts_in_hull = convexhull_contours.size(); vector > cos_angles_in_hull; vector min_angle_pnts_indexes; for(size_t j = 1; j < number_pnts_in_hull + 1; j++) { double cos_angle = getCosVectors(convexhull_contours[(j - 1) % number_pnts_in_hull], convexhull_contours[ j % number_pnts_in_hull], convexhull_contours[(j + 1) % number_pnts_in_hull]); cos_angles_in_hull.push_back(std::pair(j, cos_angle)); } sort(cos_angles_in_hull.begin(), cos_angles_in_hull.end(), sortPairDesc()); for (size_t j = 0; j < cos_angles_in_hull.size(); j++) { bool add_edge = true; for(size_t k = 0; k < min_angle_pnts_indexes.size(); k++) { if(norm(convexhull_contours[cos_angles_in_hull[j].first % number_pnts_in_hull] - convexhull_contours[min_angle_pnts_indexes[k] % number_pnts_in_hull]) < 3) { add_edge = false; } } if (add_edge) { min_angle_pnts_indexes.push_back(cos_angles_in_hull[j].first % number_pnts_in_hull); } if ((int)min_angle_pnts_indexes.size() == num_vertices) { break; } } sort(min_angle_pnts_indexes.begin(), min_angle_pnts_indexes.end()); vector contour_vertices_points; for (size_t k = 0; k < min_angle_pnts_indexes.size(); k++) { contour_vertices_points.push_back(convexhull_contours[min_angle_pnts_indexes[k]]); } patterns_vertices_points.push_back(contour_vertices_points); } if (patterns_vertices_points.size() != 3) { return false; } return true; } bool QRDecode::findTempPatternsAddingPoints(vector > > &temp_patterns_add_points) { vector >patterns_contours, patterns_vertices_points; if(!findPatternsVerticesPoints(patterns_vertices_points)) { return false; } if(!findPatternsContours(patterns_contours)) { return false; } for (size_t i = 0; i < curved_incomplete_indexes.size(); i++) { int idx_curved_side = curved_incomplete_indexes[i]; Point close_transform_pnt_curr = original_points[idx_curved_side]; Point close_transform_pnt_next = original_points[(idx_curved_side + 1) % 4]; vector patterns_indexes; for (size_t j = 0; j < patterns_vertices_points.size(); j++) { for (size_t k = 0; k < patterns_vertices_points[j].size(); k++) { if (norm(close_transform_pnt_curr - patterns_vertices_points[j][k]) < 5) { patterns_indexes.push_back(j); break; } if (norm(close_transform_pnt_next - patterns_vertices_points[j][k]) < 5) { patterns_indexes.push_back(j); break; } } } for (size_t j = 0; j < patterns_indexes.size(); j++) { vector vertices = patterns_vertices_points[patterns_indexes[j]]; vector > vertices_dist_pair; vector points; for (size_t k = 0; k < vertices.size(); k++) { double dist_to_side = distancePointToLine(vertices[k], close_transform_pnt_curr, close_transform_pnt_next); vertices_dist_pair.push_back(std::pair((int)k, dist_to_side)); } if (vertices_dist_pair.size() == 0) { return false; } sort(vertices_dist_pair.begin(), vertices_dist_pair.end(), sortPairAsc()); Point p1, p2; int index_p1_in_vertices = 0, index_p2_in_vertices = 0; for (int k = 4; k > 0; k--) { if((vertices_dist_pair[0].first == k % 4) && (vertices_dist_pair[1].first == (k - 1) % 4)) { index_p1_in_vertices = vertices_dist_pair[0].first; index_p2_in_vertices = vertices_dist_pair[1].first; } else if((vertices_dist_pair[1].first == k % 4) && (vertices_dist_pair[0].first == (k - 1) % 4)) { index_p1_in_vertices = vertices_dist_pair[1].first; index_p2_in_vertices = vertices_dist_pair[0].first; } } if (index_p1_in_vertices == index_p2_in_vertices) return false; p1 = vertices[index_p1_in_vertices]; p2 = vertices[index_p2_in_vertices]; size_t index_p1_in_contour = 0, index_p2_in_contour = 0; vector add_points = patterns_contours[patterns_indexes[j]]; for(size_t k = 0; k < add_points.size(); k++) { if (add_points[k] == p1) { index_p1_in_contour = k; } if (add_points[k] == p2) { index_p2_in_contour = k; } } if (index_p1_in_contour > index_p2_in_contour) { for (size_t k = index_p1_in_contour; k < add_points.size(); k++) { points.push_back(add_points[k]); } for (size_t k = 0; k <= index_p2_in_contour; k++) { points.push_back(add_points[k]); } } else if (index_p1_in_contour < index_p2_in_contour) { for (size_t k = index_p1_in_contour; k <= index_p2_in_contour; k++) { points.push_back(add_points[k]); } } else { return false; } if (abs(p1.x - p2.x) > abs(p1.y - p2.y)) { sort(points.begin(), points.end(), sortPointsByX()); } else { sort(points.begin(), points.end(), sortPointsByY()); } temp_patterns_add_points.push_back(std::pair >(idx_curved_side,points)); } } return true; } bool QRDecode::computePatternsAddingPoints(std::map > &patterns_add_points) { vector > > temp_patterns_add_points; if(!findTempPatternsAddingPoints(temp_patterns_add_points)) { return false; } const int num_points_in_pattern = 3; for(size_t i = 0; i < temp_patterns_add_points.size(); i++) { int idx_side = temp_patterns_add_points[i].first; int size = (int)temp_patterns_add_points[i].second.size(); float step = static_cast(size) / num_points_in_pattern; vector temp_points; for (int j = 0; j < num_points_in_pattern; j++) { float val = j * step; int idx = cvRound(val) >= size ? size - 1 : cvRound(val); temp_points.push_back(temp_patterns_add_points[i].second[idx]); } temp_points.push_back(temp_patterns_add_points[i].second.back()); if(patterns_add_points.count(idx_side) == 1) { patterns_add_points[idx_side].insert(patterns_add_points[idx_side].end(), temp_points.begin(), temp_points.end()); } patterns_add_points.insert(std::pair >(idx_side, temp_points)); } if (patterns_add_points.size() == 0) { return false; } return true; } bool QRDecode::addPointsToSides() { if(!computePatternsAddingPoints(complete_curved_sides)) { return false; } std::map >::iterator it; double mean_step = 0.0; size_t num_points_at_side = 0; for (it = complete_curved_sides.begin(); it != complete_curved_sides.end(); ++it) { int count = -1; const size_t num_points_at_pattern = it->second.size(); for(size_t j = 0; j < num_points_at_pattern - 1; j++, count++) { if (count == 3) continue; double temp_norm = norm(it->second[j] - it->second[j + 1]); mean_step += temp_norm; } num_points_at_side += num_points_at_pattern; } if (num_points_at_side == 0) { return false; } mean_step /= num_points_at_side; const size_t num_incomplete_sides = curved_incomplete_indexes.size(); for (size_t i = 0; i < num_incomplete_sides; i++) { int idx = curved_incomplete_indexes[i]; vector sides_points_indexes; const int num_points_at_side_to_add = (int)sides_points[idx].size(); for (int j = 0; j < num_points_at_side_to_add; j++) { bool not_too_close = true; const size_t num_points_at_side_exist = complete_curved_sides[idx].size(); for (size_t k = 0; k < num_points_at_side_exist; k++) { double temp_norm = norm(sides_points[idx][j] - complete_curved_sides[idx][k]); if (temp_norm < mean_step) { not_too_close = false; break; } } if (not_too_close) { sides_points_indexes.push_back(j); } } for (size_t j = 0; j < sides_points_indexes.size(); j++) { bool not_equal = true; for (size_t k = 0; k < complete_curved_sides[idx].size(); k++) { if (sides_points[idx][sides_points_indexes[j]] == complete_curved_sides[idx][k]) { not_equal = false; } } if (not_equal) { complete_curved_sides[idx].push_back(sides_points[idx][sides_points_indexes[j]]); } } } return true; } void QRDecode::completeAndSortSides() { if (complete_curved_sides.size() < 2) { for (int i = 0; i < NUM_SIDES; i++) { if(complete_curved_sides.count(curved_indexes[i]) == 0) { int idx_second_cur_side = curved_indexes[i]; complete_curved_sides.insert(std::pair >(idx_second_cur_side, sides_points[idx_second_cur_side])); } } } std::map >::iterator it; for (it = complete_curved_sides.begin(); it != complete_curved_sides.end(); ++it) { Point p1 = it->second.front(); Point p2 = it->second.back(); if (abs(p1.x - p2.x) > abs(p1.y - p2.y)) { sort(it->second.begin(), it->second.end(), sortPointsByX()); } else { sort(it->second.begin(), it->second.end(), sortPointsByY()); } } } vector > QRDecode::computeSpline(const vector &x_arr, const vector &y_arr) { const int n = (int)x_arr.size(); vector a, b(n - 1), d(n - 1), h(n - 1), alpha(n - 1), c(n), l(n), mu(n), z(n); for (int i = 0; i < (int)y_arr.size(); i++) { a.push_back(static_cast(x_arr[i])); } for (int i = 0; i < n - 1; i++) { h[i] = static_cast(y_arr[i + 1] - y_arr[i]); } for (int i = 1; i < n - 1; i++) { alpha[i] = 3 / h[i] * (a[i + 1] - a[i]) - 3 / (h[i - 1]) * (a[i] - a[i - 1]); } l[0] = 1; mu[0] = 0; z[0] = 0; for (int i = 1; i < n - 1; i++) { l[i] = 2 * (y_arr[i + 1] - y_arr[i - 1]) - h[i - 1] * mu[i - 1]; mu[i] = h[i] / l[i]; z[i] = (alpha[i] - h[i - 1] * z[i - 1]) / l[i]; } l[n - 1] = 1; z[n - 1] = 0; c[n - 1] = 0; for(int j = n - 2; j >= 0; j--) { c[j] = z[j] - mu[j] * c[j + 1]; b[j] = (a[j + 1] - a[j]) / h[j] - (h[j] * (c[j + 1] + 2 * c[j])) / 3; d[j] = (c[j + 1] - c[j]) / (3 * h[j]); } vector > S(n - 1); for (int i = 0; i < n - 1; i++) { S[i].push_back(a[i]); S[i].push_back(b[i]); S[i].push_back(c[i]); S[i].push_back(d[i]); } return S; } bool QRDecode::createSpline(vector > &spline_lines) { int start, end; vector > S; for (int idx = 0; idx < NUM_SIDES; idx++) { int idx_curved_side = curved_indexes[idx]; vector spline_points = complete_curved_sides.find(idx_curved_side)->second; vector x_arr, y_arr; for (size_t j = 0; j < spline_points.size(); j++) { x_arr.push_back(cvRound(spline_points[j].x)); y_arr.push_back(cvRound(spline_points[j].y)); } bool horizontal_order = abs(x_arr.front() - x_arr.back()) > abs(y_arr.front() - y_arr.back()); vector& second_arr = horizontal_order ? x_arr : y_arr; vector& first_arr = horizontal_order ? y_arr : x_arr; S = computeSpline(first_arr, second_arr); int closest_point_first = horizontal_order ? closest_points[idx_curved_side].second.x : closest_points[idx_curved_side].second.y; int closest_point_second = horizontal_order ? closest_points[(idx_curved_side + 1) % 4].second.x : closest_points[(idx_curved_side + 1) % 4].second.y; start = idx_curved_side; end = (idx_curved_side + 1) % 4; if(closest_point_first > closest_point_second) { start = (idx_curved_side + 1) % 4; end = idx_curved_side; } int closest_point_start = horizontal_order ? closest_points[start].second.x : closest_points[start].second.y; int closest_point_end = horizontal_order ? closest_points[end].second.x : closest_points[end].second.y; for (int index = closest_point_start; index <= closest_point_end; index++) { if (index == second_arr.front()) { spline_lines[idx].push_back(closest_points[start].second); } for (size_t i = 0; i < second_arr.size() - 1; i++) { if ((index > second_arr[i]) && (index <= second_arr[i + 1])) { float val = S[i][0] + S[i][1] * (index - second_arr[i]) + S[i][2] * (index - second_arr[i]) * (index - second_arr[i]) + S[i][3] * (index - second_arr[i]) * (index - second_arr[i]) * (index - second_arr[i]); spline_lines[idx].push_back(horizontal_order ? Point2f(static_cast(index), val) : Point2f(val, static_cast(index))); } } } } for (int i = 0; i < NUM_SIDES; i++) { if (spline_lines[i].size() == 0) { return false; } } return true; } bool QRDecode::divideIntoEvenSegments(vector > &segments_points) { vector > spline_lines(NUM_SIDES); if (!createSpline(spline_lines)) { return false; } float mean_num_points_in_line = 0.0; for (int i = 0; i < NUM_SIDES; i++) { mean_num_points_in_line += spline_lines[i].size(); } mean_num_points_in_line /= NUM_SIDES; const int min_num_points = 1, max_num_points = cvRound(mean_num_points_in_line / 2.0); float linear_threshold = 0.5f; for (int num = min_num_points; num < max_num_points; num++) { for (int i = 0; i < NUM_SIDES; i++) { segments_points[i].clear(); int size = (int)spline_lines[i].size(); float step = static_cast(size) / num; for (int j = 0; j < num; j++) { float val = j * step; int idx = cvRound(val) >= size ? size - 1 : cvRound(val); segments_points[i].push_back(spline_lines[i][idx]); } segments_points[i].push_back(spline_lines[i].back()); } float mean_of_two_sides = 0.0; for (int i = 0; i < NUM_SIDES; i++) { float mean_dist_in_segment = 0.0; for (size_t j = 0; j < segments_points[i].size() - 1; j++) { Point2f segment_start = segments_points[i][j]; Point2f segment_end = segments_points[i][j + 1]; vector::iterator it_start, it_end, it; it_start = find(spline_lines[i].begin(), spline_lines[i].end(), segment_start); it_end = find(spline_lines[i].begin(), spline_lines[i].end(), segment_end); float max_dist_to_line = 0.0; for (it = it_start; it != it_end; it++) { float temp_dist = distancePointToLine(*it, segment_start, segment_end); if (temp_dist > max_dist_to_line) { max_dist_to_line = temp_dist; } } mean_dist_in_segment += max_dist_to_line; } mean_dist_in_segment /= segments_points[i].size(); mean_of_two_sides += mean_dist_in_segment; } mean_of_two_sides /= NUM_SIDES; if (mean_of_two_sides < linear_threshold) { break; } } return true; } bool QRDecode::straightenQRCodeInParts() { vector > segments_points(NUM_SIDES); if (!divideIntoEvenSegments(segments_points)) { return false; } vector current_curved_side, opposite_curved_side; for (int i = 0; i < NUM_SIDES; i++) { Point2f temp_point_start = segments_points[i].front(); Point2f temp_point_end = segments_points[i].back(); bool horizontal_order = (abs(temp_point_start.x - temp_point_end.x) > abs(temp_point_start.y - temp_point_end.y)); float compare_point_current = horizontal_order ? segments_points[i].front().y : segments_points[(i + 1) % 2].front().x; float compare_point_opposite = horizontal_order ? segments_points[(i + 1) % 2].front().y : segments_points[i].front().x; if (compare_point_current > compare_point_opposite) { current_curved_side = segments_points[i]; opposite_curved_side = segments_points[(i + 1) % 2]; } } if (current_curved_side.size() != opposite_curved_side.size()) { return false; } size_t number_pnts_to_cut = current_curved_side.size(); if (number_pnts_to_cut == 0) { return false; } float perspective_curved_size = max(getMinSideLen(original_points)+1.f, 251.f);; const Size temporary_size(cvRound(perspective_curved_size), cvRound(perspective_curved_size)); float dist = perspective_curved_size / (number_pnts_to_cut - 1); Mat perspective_result = Mat::zeros(temporary_size, CV_8UC1); vector curved_parts_points; float start_cut = 0.0; vector temp_closest_points(4); for (size_t i = 1; i < number_pnts_to_cut; i++) { curved_parts_points.clear(); Mat test_mask = Mat::zeros(bin_barcode.size(), CV_8UC1); Point2f start_point = current_curved_side[i]; Point2f prev_start_point = current_curved_side[i - 1]; Point2f finish_point = opposite_curved_side[i]; Point2f prev_finish_point = opposite_curved_side[i - 1]; for (size_t j = 0; j < qrcode_locations.size(); j++) { if ((pointPosition(start_point, finish_point, qrcode_locations[j]) >= 0) && (pointPosition(prev_start_point, prev_finish_point, qrcode_locations[j]) <= 0)) { test_mask.at(qrcode_locations[j]) = 255; } } vector perspective_points; perspective_points.push_back(Point2f(0.0, start_cut)); perspective_points.push_back(Point2f(perspective_curved_size, start_cut)); perspective_points.push_back(Point2f(perspective_curved_size, start_cut + dist)); perspective_points.push_back(Point2f(0.0, start_cut+dist)); perspective_points.push_back(Point2f(perspective_curved_size * 0.5f, start_cut + dist * 0.5f)); if (i == 1) { for (size_t j = 0; j < closest_points.size(); j++) { if (arePointsNearest(closest_points[j].second, prev_start_point, 3.0)) { temp_closest_points[j] = perspective_points[0]; } else if (arePointsNearest(closest_points[j].second, prev_finish_point, 3.0)) { temp_closest_points[j] = perspective_points[1]; } } } if (i == number_pnts_to_cut - 1) { for (size_t j = 0; j < closest_points.size(); j++) { if (arePointsNearest(closest_points[j].second, finish_point, 3.0)) { temp_closest_points[j] = perspective_points[2]; } else if (arePointsNearest(closest_points[j].second, start_point, 3.0)) { temp_closest_points[j] = perspective_points[3]; } } } start_cut += dist; curved_parts_points.push_back(prev_start_point); curved_parts_points.push_back(prev_finish_point); curved_parts_points.push_back(finish_point); curved_parts_points.push_back(start_point); Point2f center_point = intersectionLines(curved_parts_points[0], curved_parts_points[2], curved_parts_points[1], curved_parts_points[3]); if (cvIsNaN(center_point.x) || cvIsNaN(center_point.y)) return false; vector pts = curved_parts_points; pts.push_back(center_point); Mat H = findHomography(pts, perspective_points); if (H.empty()) return false; Mat temp_intermediate(temporary_size, CV_8UC1); warpPerspective(test_mask, temp_intermediate, H, temporary_size, INTER_NEAREST); perspective_result += temp_intermediate; } Mat white_mask = Mat(temporary_size, CV_8UC1, Scalar(255)); Mat inversion = white_mask - perspective_result; Mat temp_result; original_curved_points = temp_closest_points; Point2f original_center_point = intersectionLines(original_curved_points[0], original_curved_points[2], original_curved_points[1], original_curved_points[3]); original_curved_points.push_back(original_center_point); for (size_t i = 0; i < original_curved_points.size(); i++) { if (cvIsNaN(original_curved_points[i].x) || cvIsNaN(original_curved_points[i].y)) return false; } vector perspective_straight_points; perspective_straight_points.push_back(Point2f(0.f, 0.f)); perspective_straight_points.push_back(Point2f(perspective_curved_size, 0.f)); perspective_straight_points.push_back(Point2f(perspective_curved_size, perspective_curved_size)); perspective_straight_points.push_back(Point2f(0.f, perspective_curved_size)); perspective_straight_points.push_back(Point2f(perspective_curved_size * 0.5f, perspective_curved_size * 0.5f)); Mat H = findHomography(original_curved_points, perspective_straight_points); if (H.empty()) return false; warpPerspective(inversion, temp_result, H, temporary_size, INTER_NEAREST, BORDER_REPLICATE); no_border_intermediate = temp_result(Range(1, temp_result.rows), Range(1, temp_result.cols)); const int border = cvRound(0.1 * perspective_curved_size); const int borderType = BORDER_CONSTANT; copyMakeBorder(no_border_intermediate, curved_to_straight, border, border, border, border, borderType, Scalar(255)); intermediate = curved_to_straight; return true; } bool QRDecode::preparingCurvedQRCodes() { vector result_integer_hull; getPointsInsideQRCode(original_points); if (qrcode_locations.size() == 0) return false; convexHull(qrcode_locations, result_integer_hull); if (!computeClosestPoints(result_integer_hull)) return false; if (!computeSidesPoints(result_integer_hull)) return false; if (!findAndAddStablePoint()) return false; if (!findIndexesCurvedSides()) return false; if (findIncompleteIndexesCurvedSides()) { if(!addPointsToSides()) return false; } completeAndSortSides(); if (!straightenQRCodeInParts()) return false; return true; } /** * @param finderPattern 4 points of finder pattern markers, calculated by findPatternsVerticesPoints() * @return true if the pattern has the correct side lengths */ static inline bool checkFinderPatternByAspect(const vector &finderPattern) { if (finderPattern.size() != 4ull) return false; float sidesLen[4]; for (size_t i = 0; i < finderPattern.size(); i++) { sidesLen[i] = (sqrt(normL2Sqr(Point2f(finderPattern[i] - finderPattern[(i+1ull)%finderPattern.size()])))); } const float maxSide = max(max(sidesLen[0], sidesLen[1]), max(sidesLen[2], sidesLen[3])); const float minSide = min(min(sidesLen[0], sidesLen[1]), min(sidesLen[2], sidesLen[3])); const float patternMaxRelativeLen = .3f; if (1.f - minSide / maxSide > patternMaxRelativeLen) return false; return true; } /** * @param finderPattern - 4 points of finder pattern markers, calculated by findPatternsVerticesPoints() * @param cornerPointsQR - 4 corner points of QR code * @return pair first - the index in points of finderPattern closest to the corner of the QR code, * second - the index in points of cornerPointsQR closest to the corner of finderPattern * * This function matches finder patterns to the corners of the QR code. Points of finder pattern calculated by * findPatternsVerticesPoints() may be erroneous, so they are checked. */ static inline std::pair matchPatternPoints(const vector &finderPattern, const vector& cornerPointsQR) { if (!checkFinderPatternByAspect(finderPattern)) return std::make_pair(-1, -1); float distanceToOrig = normL2Sqr(Point2f(finderPattern[0]) - cornerPointsQR[0]); int closestFinderPatternV = 0; int closetOriginalV = 0; for (size_t i = 0ull; i < finderPattern.size(); i++) { for (size_t j = 0ull; j < cornerPointsQR.size(); j++) { const float tmp = normL2Sqr(Point2f(finderPattern[i]) - cornerPointsQR[j]); if (tmp < distanceToOrig) { distanceToOrig = tmp; closestFinderPatternV = (int)i; closetOriginalV = (int)j; } } } distanceToOrig = sqrt(distanceToOrig); // check that the distance from the QR pattern to the corners of the QR code is small const float originalQrSide = sqrt(normL2Sqr(cornerPointsQR[0] - cornerPointsQR[1]))*0.5f + sqrt(normL2Sqr(cornerPointsQR[0] - cornerPointsQR[3]))*0.5f; const float maxRelativeDistance = .1f; if (distanceToOrig/originalQrSide > maxRelativeDistance) return std::make_pair(-1, -1); return std::make_pair(closestFinderPatternV, closetOriginalV); } double QRDecode::getNumModules() { vector> finderPatterns; double numModulesX = 0., numModulesY = 0.; if (findPatternsVerticesPoints(finderPatterns)) { double pattern_distance[4] = {0.,0.,0.,0.}; for (auto& pattern : finderPatterns) { auto indexes = matchPatternPoints(pattern, original_points); if (indexes == std::make_pair(-1, -1)) return 0.; Point2f vf[4] = {pattern[indexes.first % 4], pattern[(1+indexes.first) % 4], pattern[(2+indexes.first) % 4], pattern[(3+indexes.first) % 4]}; for (int i = 1; i < 4; i++) { pattern_distance[indexes.second] += (norm(vf[i] - vf[i-1])); } pattern_distance[indexes.second] += norm(vf[3] - vf[0]); pattern_distance[indexes.second] /= 4.; } const double moduleSizeX = (pattern_distance[0] + pattern_distance[1])/(2.*7.); const double moduleSizeY = (pattern_distance[0] + pattern_distance[3])/(2.*7.); numModulesX = norm(original_points[1] - original_points[0])/moduleSizeX; numModulesY = norm(original_points[3] - original_points[0])/moduleSizeY; } return (numModulesX + numModulesY)/2.; } // use code from https://stackoverflow.com/questions/13238704/calculating-the-position-of-qr-code-alignment-patterns static inline vector> getAlignmentCoordinates(int version) { if (version <= 1) return {}; int intervals = (version / 7) + 1; // Number of gaps between alignment patterns int distance = 4 * version + 4; // Distance between first and last alignment pattern int step = cvRound((double)distance / (double)intervals); // Round equal spacing to nearest integer step += step & 0b1; // Round step to next even number vector coordinates((size_t)intervals + 1ull); coordinates[0] = 6; // First coordinate is always 6 (can't be calculated with step) for (int i = 1; i <= intervals; i++) { coordinates[i] = (6 + distance - step * (intervals - i)); // Start right/bottom and go left/up by step*k } if (version >= 7) { return {std::make_pair(coordinates.back(), coordinates.back()), std::make_pair(coordinates.back(), coordinates[coordinates.size()-2]), std::make_pair(coordinates[coordinates.size()-2], coordinates.back()), std::make_pair(coordinates[coordinates.size()-2], coordinates[coordinates.size()-2]), std::make_pair(coordinates[0], coordinates[1]), std::make_pair(coordinates[1], coordinates[0]), }; } return {std::make_pair(coordinates.back(), coordinates.back())}; } bool QRDecode::updatePerspective(const Mat& H) { if (H.empty()) return false; homography = H; Mat temp_intermediate; const Size temporary_size(cvRound(test_perspective_size), cvRound(test_perspective_size)); warpPerspective(bin_barcode, temp_intermediate, H, temporary_size, INTER_NEAREST); no_border_intermediate = temp_intermediate(Range(1, temp_intermediate.rows), Range(1, temp_intermediate.cols)); const int border = cvRound(0.1 * test_perspective_size); const int borderType = BORDER_CONSTANT; copyMakeBorder(no_border_intermediate, intermediate, border, border, border, border, borderType, Scalar(255)); return true; } static inline Point computeOffset(const vector& v) { // compute the width/height of convex hull Rect areaBox = boundingRect(v); // compute the good offset // the box is consisted by 7 steps // to pick the middle of the stripe, it needs to be 1/14 of the size const int cStep = 7 * 2; Point offset = Point(areaBox.width, areaBox.height); offset /= cStep; return offset; } // QR code with version 7 or higher has a special 18 bit version number code. // @return std::pair first - distance to estimatedVersion, second - version /** * @param numModules - estimated numModules * @param estimatedVersion * @return pair, first - Hamming distance to 18 bit code, second - closest version * * QR code with version 7 or higher has a special 18 bit version number code: * https://www.thonky.com/qr-code-tutorial/format-version-information */ static inline std::pair getVersionByCode(double numModules, Mat qr, int estimatedVersion) { const double moduleSize = qr.rows / numModules; Point2d startVersionInfo1 = Point2d((numModules-8.-3.)*moduleSize, 0.); Point2d endVersionInfo1 = Point2d((numModules-8.)*moduleSize, moduleSize*6.); Point2d startVersionInfo2 = Point2d(0., (numModules-8.-3.)*moduleSize); Point2d endVersionInfo2 = Point2d(moduleSize*6., (numModules-8.)*moduleSize); Mat v1(qr, Rect2d(startVersionInfo1, endVersionInfo1)); Mat v2(qr, Rect2d(startVersionInfo2, endVersionInfo2)); const double thresh = 127.; resize(v1, v1, Size(3, 6), 0., 0., INTER_AREA); threshold(v1, v1, thresh, 255, THRESH_BINARY); resize(v2, v2, Size(6, 3), 0., 0., INTER_AREA); threshold(v2, v2, thresh, 255, THRESH_BINARY); Mat version1, version2; // convert version1 (top right version information block) and // version2 (bottom left version information block) to version table format // https://www.thonky.com/qr-code-tutorial/format-version-tables rotate((255-v1)/255, version1, ROTATE_180), rotate(((255-v2)/255).t(), version2, ROTATE_180); static uint8_t versionCodes[][18] = {{0,0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0},{0,0,1,0,0,0,0,1,0,1,1,0,1,1,1,1,0,0}, {0,0,1,0,0,1,1,0,1,0,1,0,0,1,1,0,0,1},{0,0,1,0,1,0,0,1,0,0,1,1,0,1,0,0,1,1}, {0,0,1,0,1,1,1,0,1,1,1,1,1,1,0,1,1,0},{0,0,1,1,0,0,0,1,1,1,0,1,1,0,0,0,1,0}, {0,0,1,1,0,1,1,0,0,0,0,1,0,0,0,1,1,1},{0,0,1,1,1,0,0,1,1,0,0,0,0,0,1,1,0,1}, {0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0},{0,1,0,0,0,0,1,0,1,1,0,1,1,1,1,0,0,0}, {0,1,0,0,0,1,0,1,0,0,0,1,0,1,1,1,0,1},{0,1,0,0,1,0,1,0,1,0,0,0,0,1,0,1,1,1}, {0,1,0,0,1,1,0,1,0,1,0,0,1,1,0,0,1,0},{0,1,0,1,0,0,1,0,0,1,1,0,1,0,0,1,1,0}, {0,1,0,1,0,1,0,1,1,0,1,0,0,0,0,0,1,1},{0,1,0,1,1,0,1,0,0,0,1,1,0,0,1,0,0,1}, {0,1,0,1,1,1,0,1,1,1,1,1,1,0,1,1,0,0},{0,1,1,0,0,0,1,1,1,0,1,1,0,0,0,1,0,0}, {0,1,1,0,0,1,0,0,0,1,1,1,1,0,0,0,0,1},{0,1,1,0,1,0,1,1,1,1,1,0,1,0,1,0,1,1}, {0,1,1,0,1,1,0,0,0,0,1,0,0,0,1,1,1,0},{0,1,1,1,0,0,1,1,0,0,0,0,0,1,1,0,1,0}, {0,1,1,1,0,1,0,0,1,1,0,0,1,1,1,1,1,1},{0,1,1,1,1,0,1,1,0,1,0,1,1,1,0,1,0,1}, {0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,0},{1,0,0,0,0,0,1,0,0,1,1,1,0,1,0,1,0,1}, {1,0,0,0,0,1,0,1,1,0,1,1,1,1,0,0,0,0},{1,0,0,0,1,0,1,0,0,0,1,0,1,1,1,0,1,0}, {1,0,0,0,1,1,0,1,1,1,1,0,0,1,1,1,1,1},{1,0,0,1,0,0,1,0,1,1,0,0,0,0,1,0,1,1}, {1,0,0,1,0,1,0,1,0,0,0,0,1,0,1,1,1,0},{1,0,0,1,1,0,1,0,1,0,0,1,1,0,0,1,0,0}, {1,0,0,1,1,1,0,1,0,1,0,1,0,0,0,0,0,1},{1,0,1,0,0,0,1,1,0,0,0,1,1,0,1,0,0,1} }; double minDist = 19.; int bestVersion = -1; const double penaltyFactor = 0.8; for (int i = 0; i < (int)(sizeof(versionCodes)/sizeof(versionCodes[0])); i++) { Mat currVers(Size(3, 6), CV_8UC1, versionCodes[i]); // minimum hamming distance between version = 8 double tmp = norm(currVers, version1, NORM_HAMMING) + penaltyFactor*abs(estimatedVersion-i-7); if (tmp < minDist) { bestVersion = i+7; minDist = tmp; } tmp = norm(currVers, version2, NORM_HAMMING) + penaltyFactor*abs(estimatedVersion-i-7); if (tmp < minDist) { bestVersion = i+7; minDist = tmp; } } return std::make_pair(minDist, bestVersion); } bool QRDecode::versionDefinition() { CV_TRACE_FUNCTION(); CV_LOG_DEBUG(NULL, "QR corners: " << original_points[0] << " " << original_points[1] << " " << original_points[2] << " " << original_points[3]); LineIterator line_iter(intermediate, Point2f(0, 0), Point2f(test_perspective_size, test_perspective_size)); Point black_point = Point(0, 0); for(int j = 0; j < line_iter.count; j++, ++line_iter) { const uint8_t value = intermediate.at(line_iter.pos()); if (value == 0) { black_point = line_iter.pos(); break; } } Mat mask = Mat::zeros(intermediate.rows + 2, intermediate.cols + 2, CV_8UC1); floodFill(intermediate, mask, black_point, 255, 0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY); vector locations, non_zero_elem; Mat mask_roi = mask(Range(1, intermediate.rows - 1), Range(1, intermediate.cols - 1)); findNonZero(mask_roi, non_zero_elem); convexHull(non_zero_elem, locations); Point offset = computeOffset(locations); Point temp_remote = locations[0], remote_point; const Point delta_diff = offset; for (size_t i = 0; i < locations.size(); i++) { if (norm(black_point - temp_remote) <= norm(black_point - locations[i])) { const uint8_t value = intermediate.at(temp_remote - delta_diff); temp_remote = locations[i]; if (value == 0) { remote_point = temp_remote - delta_diff; } else { remote_point = temp_remote - (delta_diff / 2); } } } size_t transition_x = 0 , transition_y = 0; uint8_t future_pixel = 255; const uint8_t *intermediate_row = intermediate.ptr(remote_point.y); for(int i = remote_point.x; i < intermediate.cols; i++) { if (intermediate_row[i] == future_pixel) { future_pixel = static_cast(~future_pixel); transition_x++; } } future_pixel = 255; for(int j = remote_point.y; j < intermediate.rows; j++) { const uint8_t value = intermediate.at(Point(j, remote_point.x)); if (value == future_pixel) { future_pixel = static_cast(~future_pixel); transition_y++; } } const int versionByTransition = saturate_cast((std::min(transition_x, transition_y) - 1) * 0.25 - 1); const int numModulesByTransition = 21 + (versionByTransition - 1) * 4; const double numModulesByFinderPattern = getNumModules(); const double versionByFinderPattern = (numModulesByFinderPattern - 21.) * .25 + 1.; bool useFinderPattern = false; const double thresholdFinderPattern = 0.2; const double roundingError = abs(numModulesByFinderPattern - cvRound(numModulesByFinderPattern)); if (cvRound(versionByFinderPattern) >= 1 && versionByFinderPattern <= 6. && transition_x != transition_y && roundingError < thresholdFinderPattern) { useFinderPattern = true; } bool useCode = false; int versionByCode = 7; if (cvRound(versionByFinderPattern) >= 7 || versionByTransition >= 7) { vector> versionAndDistances; if (cvRound(versionByFinderPattern) >= 7) { versionAndDistances.push_back(getVersionByCode(numModulesByFinderPattern, no_border_intermediate, cvRound(versionByFinderPattern))); } if (versionByTransition >= 7) { versionAndDistances.push_back(getVersionByCode(numModulesByTransition, no_border_intermediate, versionByTransition)); } const auto& bestVersion = min(versionAndDistances.front(), versionAndDistances.back()); double distanceByCode = bestVersion.first; versionByCode = bestVersion.second; if (distanceByCode < 5.) { useCode = true; } } if (useCode) { CV_LOG_DEBUG(NULL, "Version type: useCode"); version = (uint8_t)versionByCode; } else if (useFinderPattern ) { CV_LOG_DEBUG(NULL, "Version type: useFinderPattern"); version = (uint8_t)cvRound(versionByFinderPattern); } else { CV_LOG_DEBUG(NULL, "Version type: useTransition"); version = (uint8_t)versionByTransition; } version_size = 21 + (version - 1) * 4; if ( !(0 < version && version <= 40) ) { return false; } CV_LOG_DEBUG(NULL, "QR version: " << (int)version); return true; } void QRDecode::detectAlignment() { vector> alignmentPositions = getAlignmentCoordinates(version); if (alignmentPositions.size() > 0) { vector perspective_points = {{0.f, 0.f}, {test_perspective_size, 0.f}, {0.f, test_perspective_size}}; vector object_points = {original_points[0], original_points[1], original_points[3]}; // create alignment image static uint8_t alignmentMarker[25] = { 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 255, 0, 255, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0 }; Mat alignmentMarkerMat(5, 5, CV_8UC1, alignmentMarker); const float module_size = test_perspective_size / version_size; Mat resizedAlignmentMarker; resize(alignmentMarkerMat, resizedAlignmentMarker, Size(cvRound(module_size * 5.f), cvRound(module_size * 5.f)), 0, 0, INTER_AREA); const float module_offset = 1.9f; const float offset = (module_size * (5 + module_offset * 2)); // 5 modules in alignment marker, 2 x module_offset modules in offset for (const pair& alignmentPos : alignmentPositions) { const float left_top_x = (module_size * (alignmentPos.first - 2.f - module_offset)); // add offset const float left_top_y = (module_size * (alignmentPos.second - 2.f - module_offset)); // add offset Mat subImage(no_border_intermediate, Rect(cvRound(left_top_x), cvRound(left_top_y), cvRound(offset), cvRound(offset))); Mat resTemplate; matchTemplate(subImage, resizedAlignmentMarker, resTemplate, TM_CCOEFF_NORMED); double minVal = 0., maxVal = 0.; Point minLoc, maxLoc, matchLoc; minMaxLoc(resTemplate, &minVal, &maxVal, &minLoc, &maxLoc); CV_LOG_DEBUG(NULL, "Alignment maxVal: " << maxVal); if (maxVal > 0.65) { const float templateOffset = static_cast(resizedAlignmentMarker.size().width) / 2.f; Point2f alignmentCoord(Point2f(maxLoc.x + left_top_x + templateOffset, maxLoc.y + left_top_y + templateOffset)); alignment_coords.push_back(alignmentCoord); perspectiveTransform(alignment_coords, alignment_coords, homography.inv()); CV_LOG_DEBUG(NULL, "Alignment coords: " << alignment_coords); const float relativePosX = (alignmentPos.first + 0.5f) / version_size; const float relativePosY = (alignmentPos.second + 0.5f) / version_size; perspective_points.push_back({relativePosX * test_perspective_size, relativePosY * test_perspective_size}); object_points.push_back(alignment_coords.back()); } } if (object_points.size() > 3ull) { double ransacReprojThreshold = 10.; if (version == 2) { // in low version original_points[2] may be calculated more accurately using intersections method object_points.push_back(original_points[2]); ransacReprojThreshold = 5.; // set more strict ransacReprojThreshold perspective_points.push_back({test_perspective_size, test_perspective_size}); } Mat H = findHomography(object_points, perspective_points, RANSAC, ransacReprojThreshold); if (H.empty()) return; updatePerspective(H); vector newCorner2 = {{test_perspective_size, test_perspective_size}}; perspectiveTransform(newCorner2, newCorner2, H.inv()); original_points[2] = newCorner2.front(); } } } bool QRDecode::samplingForVersion() { CV_TRACE_FUNCTION(); const double multiplyingFactor = (version < 3) ? 1. : (version == 3) ? 2. : 3.; const Size newFactorSize( cvRound(no_border_intermediate.size().width * multiplyingFactor), cvRound(no_border_intermediate.size().height * multiplyingFactor)); Mat postIntermediate(newFactorSize, CV_8UC1); resize(no_border_intermediate, postIntermediate, newFactorSize, 0, 0, INTER_AREA); const int delta_rows = cvRound((postIntermediate.rows * 1.0) / version_size); const int delta_cols = cvRound((postIntermediate.cols * 1.0) / version_size); // number of elements in the tail const int skipped_rows = postIntermediate.rows - delta_rows * version_size; const int skipped_cols = postIntermediate.cols - delta_cols * version_size; vector deltas_rows(version_size, delta_rows); vector deltas_cols(version_size, delta_cols); for (int i = 0; i < abs(skipped_rows); i++) { // fix deltas_rows at each skip_step const double skip_step = static_cast(version_size)/abs(skipped_rows); const int corrected_index = static_cast(i*skip_step + skip_step/2); deltas_rows[corrected_index] += skipped_rows > 0 ? 1 : -1; } for (int i = 0; i < abs(skipped_cols); i++) { // fix deltas_cols at each skip_step const double skip_step = static_cast(version_size)/abs(skipped_cols); const int corrected_index = static_cast(i*skip_step + skip_step/2); deltas_cols[corrected_index] += skipped_cols > 0 ? 1 : -1; } const double totalFrequencyElem = countNonZero(postIntermediate) / static_cast(postIntermediate.total()); straight = Mat(Size(version_size, version_size), CV_8UC1, Scalar(0)); for (int r = 0, i = 0; i < version_size; r += deltas_rows[i], i++) { for (int c = 0, j = 0; j < version_size; c += deltas_cols[j], j++) { Mat tile = postIntermediate( Range(r, min(r + delta_rows, postIntermediate.rows)), Range(c, min(c + delta_cols, postIntermediate.cols))); const double frequencyElem = (countNonZero(tile) * 1.0) / tile.total(); straight.ptr(i)[j] = (frequencyElem < totalFrequencyElem) ? 0 : 255; } } return true; } bool QRDecode::decodingProcess() { #ifdef HAVE_QUIRC if (straight.empty()) { return false; } quirc_code qr_code; memset(&qr_code, 0, sizeof(qr_code)); qr_code.size = straight.size().width; for (int x = 0; x < qr_code.size; x++) { for (int y = 0; y < qr_code.size; y++) { int position = y * qr_code.size + x; qr_code.cell_bitmap[position >> 3] |= straight.ptr(y)[x] ? 0 : (1 << (position & 7)); } } quirc_data qr_code_data; quirc_decode_error_t errorCode = quirc_decode(&qr_code, &qr_code_data); if(errorCode == QUIRC_ERROR_DATA_ECC){ quirc_flip(&qr_code); errorCode = quirc_decode(&qr_code, &qr_code_data); } if (errorCode != 0) { return false; } for (int i = 0; i < qr_code_data.payload_len; i++) { result_info += qr_code_data.payload[i]; } return true; #else return false; #endif } bool QRDecode::straightDecodingProcess() { #ifdef HAVE_QUIRC if (!updatePerspective(getHomography())) { return false; } if (!versionDefinition()) { return false; } if (useAlignmentMarkers) detectAlignment(); if (!samplingForVersion()) { return false; } if (!decodingProcess()) { return false; } return true; #else std::cout << "Library QUIRC is not linked. No decoding is performed. Take it to the OpenCV repository." << std::endl; return false; #endif } bool QRDecode::curvedDecodingProcess() { #ifdef HAVE_QUIRC if (!preparingCurvedQRCodes()) { return false; } if (!versionDefinition()) { return false; } if (!samplingForVersion()) { return false; } if (!decodingProcess()) { return false; } return true; #else std::cout << "Library QUIRC is not linked. No decoding is performed. Take it to the OpenCV repository." << std::endl; return false; #endif } QRDecode::QRDecode(bool _useAlignmentMarkers): useAlignmentMarkers(_useAlignmentMarkers), version(0), version_size(0), test_perspective_size(0.f) {} std::string ImplContour::decode(InputArray in, InputArray points, OutputArray straight_qrcode) const { Mat inarr; if (!checkQRInputImage(in, inarr)) return std::string(); vector src_points; points.copyTo(src_points); CV_Assert(src_points.size() == 4); CV_CheckGT(contourArea(src_points), 0.0, "Invalid QR code source points"); QRDecode qrdec(useAlignmentMarkers); qrdec.init(inarr, src_points); bool ok = qrdec.straightDecodingProcess(); std::string decoded_info = qrdec.getDecodeInformation(); if (!ok && straight_qrcode.needed()) { straight_qrcode.release(); } else if (straight_qrcode.needed()) { qrdec.getStraightBarcode().convertTo(straight_qrcode, CV_8UC1); } if (ok && !decoded_info.empty()) { alignmentMarkers = {qrdec.alignment_coords}; updateQrCorners = qrdec.getOriginalPoints(); } return ok ? decoded_info : std::string(); } String QRCodeDetector::decodeCurved(InputArray in, InputArray points, OutputArray straight_qrcode) { CV_Assert(p); return std::dynamic_pointer_cast(p)->decodeCurved(in, points, straight_qrcode); } String ImplContour::decodeCurved(InputArray in, InputArray points, OutputArray straight_qrcode) { Mat inarr; if (!checkQRInputImage(in, inarr)) return std::string(); vector src_points; points.copyTo(src_points); CV_Assert(src_points.size() == 4); CV_CheckGT(contourArea(src_points), 0.0, "Invalid QR code source points"); QRDecode qrdec(useAlignmentMarkers); qrdec.init(inarr, src_points); bool ok = qrdec.curvedDecodingProcess(); std::string decoded_info = qrdec.getDecodeInformation(); if (!ok && straight_qrcode.needed()) { straight_qrcode.release(); } else if (straight_qrcode.needed()) { qrdec.getStraightBarcode().convertTo(straight_qrcode, CV_8UC1); } return ok ? decoded_info : std::string(); } std::string ImplContour::detectAndDecode(InputArray in, OutputArray points_, OutputArray straight_qrcode) const { Mat inarr; if (!checkQRInputImage(in, inarr)) { points_.release(); return std::string(); } vector points; bool ok = detect(inarr, points); if (!ok) { points_.release(); return std::string(); } updatePointsResult(points_, points); std::string decoded_info = decode(inarr, points, straight_qrcode); return decoded_info; } std::string QRCodeDetector::detectAndDecodeCurved(InputArray in, OutputArray points, OutputArray straight_qrcode) { CV_Assert(p); return std::dynamic_pointer_cast(p)->detectAndDecodeCurved(in, points, straight_qrcode); } std::string ImplContour::detectAndDecodeCurved(InputArray in, OutputArray points_, OutputArray straight_qrcode) { Mat inarr; if (!checkQRInputImage(in, inarr)) { points_.release(); return std::string(); } vector points; bool ok = detect(inarr, points); if (!ok) { points_.release(); return std::string(); } updatePointsResult(points_, points); std::string decoded_info = decodeCurved(inarr, points, straight_qrcode); return decoded_info; } class QRDetectMulti : public QRDetect { public: void init(const Mat& src, double eps_vertical_ = 0.2, double eps_horizontal_ = 0.1); bool localization(); bool computeTransformationPoints(const size_t cur_ind); vector< vector < Point2f > > getTransformationPoints() { return transformation_points;} protected: int findNumberLocalizationPoints(vector& tmp_localization_points); void findQRCodeContours(vector& tmp_localization_points, vector< vector< Point2f > >& true_points_group, const int& num_qrcodes); bool checkSets(vector >& true_points_group, vector >& true_points_group_copy, vector& tmp_localization_points); void deleteUsedPoints(vector >& true_points_group, vector >& loc, vector& tmp_localization_points); void fixationPoints(vector &local_point); bool checkPoints(vector quadrangle_points); bool checkPointsInsideQuadrangle(const vector& quadrangle_points); bool checkPointsInsideTriangle(const vector& triangle_points); Mat bin_barcode_fullsize, bin_barcode_temp; vector not_resized_loc_points; vector resized_loc_points; vector< vector< Point2f > > localization_points, transformation_points; struct compareDistanse_y { bool operator()(const Point2f& a, const Point2f& b) const { return a.y < b.y; } }; struct compareSquare { const vector& points; compareSquare(const vector& points_) : points(points_) {} bool operator()(const Vec3i& a, const Vec3i& b) const; }; Mat original; class ParallelSearch : public ParallelLoopBody { public: ParallelSearch(vector< vector< Point2f > >& true_points_group_, vector< vector< Point2f > >& loc_, int iter_, vector& end_, vector< vector< Vec3i > >& all_points_, QRDetectMulti& cl_) : true_points_group(true_points_group_), loc(loc_), iter(iter_), end(end_), all_points(all_points_), cl(cl_) { } void operator()(const Range& range) const CV_OVERRIDE; vector< vector< Point2f > >& true_points_group; vector< vector< Point2f > >& loc; int iter; vector& end; vector< vector< Vec3i > >& all_points; QRDetectMulti& cl; }; }; void QRDetectMulti::ParallelSearch::operator()(const Range& range) const { for (int s = range.start; s < range.end; s++) { bool flag = false; for (int r = iter; r < end[s]; r++) { if (flag) break; size_t x = iter + s; size_t k = r - iter; vector triangle; for (int l = 0; l < 3; l++) { triangle.push_back(true_points_group[s][all_points[s][k][l]]); } if (cl.checkPointsInsideTriangle(triangle)) { bool flag_for_break = false; cl.fixationPoints(triangle); if (triangle.size() == 3) { cl.localization_points[x] = triangle; if (cl.purpose == cl.SHRINKING) { for (size_t j = 0; j < 3; j++) { cl.localization_points[x][j] *= cl.coeff_expansion; } } else if (cl.purpose == cl.ZOOMING) { for (size_t j = 0; j < 3; j++) { cl.localization_points[x][j] /= cl.coeff_expansion; } } for (size_t i = 0; i < 3; i++) { for (size_t j = i + 1; j < 3; j++) { if (norm(cl.localization_points[x][i] - cl.localization_points[x][j]) < 10) { cl.localization_points[x].clear(); flag_for_break = true; break; } } if (flag_for_break) break; } if ((!flag_for_break) && (cl.localization_points[x].size() == 3) && (cl.computeTransformationPoints(x)) && (cl.checkPointsInsideQuadrangle(cl.transformation_points[x])) && (cl.checkPoints(cl.transformation_points[x]))) { for (int l = 0; l < 3; l++) { loc[s][all_points[s][k][l]].x = -1; } flag = true; break; } } if (flag) { break; } else { cl.transformation_points[x].clear(); cl.localization_points[x].clear(); } } } } } void QRDetectMulti::init(const Mat& src, double eps_vertical_, double eps_horizontal_) { CV_TRACE_FUNCTION(); CV_Assert(!src.empty()); const double min_side = std::min(src.size().width, src.size().height); if (min_side < 512.0) { purpose = ZOOMING; coeff_expansion = 512.0 / min_side; const int width = cvRound(src.size().width * coeff_expansion); const int height = cvRound(src.size().height * coeff_expansion); Size new_size(width, height); resize(src, barcode, new_size, 0, 0, INTER_LINEAR_EXACT); } else if (min_side > 512.0) { purpose = SHRINKING; coeff_expansion = min_side / 512.0; const int width = cvRound(src.size().width / coeff_expansion); const int height = cvRound(src.size().height / coeff_expansion); Size new_size(width, height); resize(src, barcode, new_size, 0, 0, INTER_AREA); } else { purpose = UNCHANGED; coeff_expansion = 1.0; barcode = src.clone(); } eps_vertical = eps_vertical_; eps_horizontal = eps_horizontal_; adaptiveThreshold(barcode, bin_barcode, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2); adaptiveThreshold(src, bin_barcode_fullsize, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2); } void QRDetectMulti::fixationPoints(vector &local_point) { CV_TRACE_FUNCTION(); Point2f v0(local_point[1] - local_point[2]); Point2f v1(local_point[0] - local_point[2]); Point2f v2(local_point[1] - local_point[0]); double cos_angles[3], norm_triangl[3]; norm_triangl[0] = norm(v0); norm_triangl[1] = norm(v1); norm_triangl[2] = norm(v2); cos_angles[0] = v2.dot(-v1) / (norm_triangl[1] * norm_triangl[2]); cos_angles[1] = v2.dot(v0) / (norm_triangl[0] * norm_triangl[2]); cos_angles[2] = v1.dot(v0) / (norm_triangl[0] * norm_triangl[1]); const double angle_barrier = 0.85; if (fabs(cos_angles[0]) > angle_barrier || fabs(cos_angles[1]) > angle_barrier || fabs(cos_angles[2]) > angle_barrier) { local_point.clear(); return; } size_t i_min_cos = (cos_angles[0] < cos_angles[1] && cos_angles[0] < cos_angles[2]) ? 0 : (cos_angles[1] < cos_angles[0] && cos_angles[1] < cos_angles[2]) ? 1 : 2; size_t index_max = 0; double max_area = std::numeric_limits::min(); for (size_t i = 0; i < local_point.size(); i++) { const size_t current_index = i % 3; const size_t left_index = (i + 1) % 3; const size_t right_index = (i + 2) % 3; const Point2f current_point(local_point[current_index]); const Point2f left_point(local_point[left_index]); const Point2f right_point(local_point[right_index]); const Point2f central_point(intersectionLines( current_point, Point2f(static_cast((local_point[left_index].x + local_point[right_index].x) * 0.5), static_cast((local_point[left_index].y + local_point[right_index].y) * 0.5)), Point2f(0, static_cast(bin_barcode_temp.rows - 1)), Point2f(static_cast(bin_barcode_temp.cols - 1), static_cast(bin_barcode_temp.rows - 1)))); vector list_area_pnt; list_area_pnt.push_back(current_point); vector list_line_iter; list_line_iter.push_back(LineIterator(bin_barcode_temp, current_point, left_point)); list_line_iter.push_back(LineIterator(bin_barcode_temp, current_point, central_point)); list_line_iter.push_back(LineIterator(bin_barcode_temp, current_point, right_point)); for (size_t k = 0; k < list_line_iter.size(); k++) { LineIterator& li = list_line_iter[k]; uint8_t future_pixel = 255, count_index = 0; for (int j = 0; j < li.count; j++, ++li) { Point p = li.pos(); if (p.x >= bin_barcode_temp.cols || p.y >= bin_barcode_temp.rows) { break; } const uint8_t value = bin_barcode_temp.at(p); if (value == future_pixel) { future_pixel = static_cast(~future_pixel); count_index++; if (count_index == 3) { list_area_pnt.push_back(p); break; } } } } const double temp_check_area = contourArea(list_area_pnt); if (temp_check_area > max_area) { index_max = current_index; max_area = temp_check_area; } } if (index_max == i_min_cos) { std::swap(local_point[0], local_point[index_max]); } else { local_point.clear(); return; } const Point2f rpt = local_point[0], bpt = local_point[1], gpt = local_point[2]; Matx22f m(rpt.x - bpt.x, rpt.y - bpt.y, gpt.x - rpt.x, gpt.y - rpt.y); if (determinant(m) > 0) { std::swap(local_point[1], local_point[2]); } } class BWCounter { size_t white; size_t black; public: BWCounter(size_t b = 0, size_t w = 0) : white(w), black(b) {} BWCounter& operator+=(const BWCounter& other) { black += other.black; white += other.white; return *this; } void count1(uchar pixel) { if (pixel == 255) white++; else if (pixel == 0) black++; } double getBWFraction() const { return white == 0 ? std::numeric_limits::infinity() : double(black) / double(white); } static BWCounter checkOnePair(const Point2f& tl, const Point2f& tr, const Point2f& bl, const Point2f& br, const Mat& img) { BWCounter res; LineIterator li1(tl, tr), li2(bl, br); for (int i = 0; i < li1.count && i < li2.count; i++, li1++, li2++) { LineIterator it(img, li1.pos(), li2.pos()); for (int r = 0; r < it.count; r++, it++) res.count1(img.at(it.pos())); } return res; } }; bool QRDetectMulti::checkPoints(vector quadrangle) { if (quadrangle.size() != 4) return false; std::sort(quadrangle.begin(), quadrangle.end(), compareDistanse_y()); BWCounter s; s += BWCounter::checkOnePair(quadrangle[1], quadrangle[0], quadrangle[2], quadrangle[0], bin_barcode); s += BWCounter::checkOnePair(quadrangle[1], quadrangle[3], quadrangle[2], quadrangle[3], bin_barcode); const double frac = s.getBWFraction(); return frac > 0.76 && frac < 1.24; } bool QRDetectMulti::checkPointsInsideQuadrangle(const vector& quadrangle_points) { if (quadrangle_points.size() != 4) return false; int count = 0; for (size_t i = 0; i < not_resized_loc_points.size(); i++) { if (pointPolygonTest(quadrangle_points, not_resized_loc_points[i], true) > 0) { count++; } } if (count == 3) return true; else return false; } bool QRDetectMulti::checkPointsInsideTriangle(const vector& triangle_points) { if (triangle_points.size() != 3) return false; double eps = 3; for (size_t i = 0; i < resized_loc_points.size(); i++) { if (pointPolygonTest( triangle_points, resized_loc_points[i], true ) > 0) { if ((abs(resized_loc_points[i].x - triangle_points[0].x) > eps) && (abs(resized_loc_points[i].x - triangle_points[1].x) > eps) && (abs(resized_loc_points[i].x - triangle_points[2].x) > eps)) { return false; } } } return true; } bool QRDetectMulti::compareSquare::operator()(const Vec3i& a, const Vec3i& b) const { Point2f a0 = points[a[0]]; Point2f a1 = points[a[1]]; Point2f a2 = points[a[2]]; Point2f b0 = points[b[0]]; Point2f b1 = points[b[1]]; Point2f b2 = points[b[2]]; return fabs((a1.x - a0.x) * (a2.y - a0.y) - (a2.x - a0.x) * (a1.y - a0.y)) < fabs((b1.x - b0.x) * (b2.y - b0.y) - (b2.x - b0.x) * (b1.y - b0.y)); } int QRDetectMulti::findNumberLocalizationPoints(vector& tmp_localization_points) { size_t number_possible_purpose = 1; if (purpose == SHRINKING) number_possible_purpose = 2; Mat tmp_shrinking = bin_barcode; int tmp_num_points = 0; int num_points = -1; for (eps_horizontal = 0.1; eps_horizontal < 0.4; eps_horizontal += 0.1) { tmp_num_points = 0; num_points = -1; if (purpose == SHRINKING) number_possible_purpose = 2; else number_possible_purpose = 1; for (size_t k = 0; k < number_possible_purpose; k++) { if (k == 1) bin_barcode = bin_barcode_fullsize; vector list_lines_x = searchHorizontalLines(); if (list_lines_x.empty()) { if (k == 0) { k = 1; bin_barcode = bin_barcode_fullsize; list_lines_x = searchHorizontalLines(); if (list_lines_x.empty()) break; } else break; } vector list_lines_y = extractVerticalLines(list_lines_x, eps_horizontal); if (list_lines_y.size() < 3) { if (k == 0) { k = 1; bin_barcode = bin_barcode_fullsize; list_lines_x = searchHorizontalLines(); if (list_lines_x.empty()) break; list_lines_y = extractVerticalLines(list_lines_x, eps_horizontal); if (list_lines_y.size() < 3) break; } else break; } vector index_list_lines_y; for (size_t i = 0; i < list_lines_y.size(); i++) index_list_lines_y.push_back(-1); num_points = 0; for (size_t i = 0; i < list_lines_y.size() - 1; i++) { for (size_t j = i; j < list_lines_y.size(); j++ ) { double points_distance = norm(list_lines_y[i] - list_lines_y[j]); if (points_distance <= 10) { if ((index_list_lines_y[i] == -1) && (index_list_lines_y[j] == -1)) { index_list_lines_y[i] = num_points; index_list_lines_y[j] = num_points; num_points++; } else if (index_list_lines_y[i] != -1) index_list_lines_y[j] = index_list_lines_y[i]; else if (index_list_lines_y[j] != -1) index_list_lines_y[i] = index_list_lines_y[j]; } } } for (size_t i = 0; i < index_list_lines_y.size(); i++) { if (index_list_lines_y[i] == -1) { index_list_lines_y[i] = num_points; num_points++; } } if ((tmp_num_points < num_points) && (k == 1)) { purpose = UNCHANGED; tmp_num_points = num_points; bin_barcode = bin_barcode_fullsize; coeff_expansion = 1.0; } if ((tmp_num_points < num_points) && (k == 0)) { tmp_num_points = num_points; } } if ((tmp_num_points < 3) && (tmp_num_points >= 1)) { const double min_side = std::min(bin_barcode_fullsize.size().width, bin_barcode_fullsize.size().height); if (min_side > 512) { bin_barcode = tmp_shrinking; purpose = SHRINKING; coeff_expansion = min_side / 512.0; } if (min_side < 512) { bin_barcode = tmp_shrinking; purpose = ZOOMING; coeff_expansion = 512 / min_side; } } else break; } if (purpose == SHRINKING) bin_barcode = tmp_shrinking; num_points = tmp_num_points; vector list_lines_x = searchHorizontalLines(); if (list_lines_x.empty()) return num_points; vector list_lines_y = extractVerticalLines(list_lines_x, eps_horizontal); if (list_lines_y.size() < 3) return num_points; if (num_points < 3) return num_points; Mat labels; kmeans(list_lines_y, num_points, labels, TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1), num_points, KMEANS_PP_CENTERS, tmp_localization_points); bin_barcode_temp = bin_barcode.clone(); if (purpose == SHRINKING) { const int width = cvRound(bin_barcode.size().width * coeff_expansion); const int height = cvRound(bin_barcode.size().height * coeff_expansion); Size new_size(width, height); Mat intermediate; resize(bin_barcode, intermediate, new_size, 0, 0, INTER_LINEAR_EXACT); bin_barcode = intermediate.clone(); } else if (purpose == ZOOMING) { const int width = cvRound(bin_barcode.size().width / coeff_expansion); const int height = cvRound(bin_barcode.size().height / coeff_expansion); Size new_size(width, height); Mat intermediate; resize(bin_barcode, intermediate, new_size, 0, 0, INTER_LINEAR_EXACT); bin_barcode = intermediate.clone(); } else { bin_barcode = bin_barcode_fullsize.clone(); } return num_points; } void QRDetectMulti::findQRCodeContours(vector& tmp_localization_points, vector< vector< Point2f > >& true_points_group, const int& num_qrcodes) { Mat gray, blur_image, threshold_output; Mat bar = barcode; const int width = cvRound(bin_barcode.size().width); const int height = cvRound(bin_barcode.size().height); Size new_size(width, height); resize(bar, bar, new_size, 0, 0, INTER_LINEAR_EXACT); blur(bar, blur_image, Size(3, 3)); threshold(blur_image, threshold_output, 50, 255, THRESH_BINARY); vector< vector< Point > > contours; vector hierarchy; findContours(threshold_output, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0)); vector all_contours_points; for (size_t i = 0; i < contours.size(); i++) { for (size_t j = 0; j < contours[i].size(); j++) { all_contours_points.push_back(contours[i][j]); } } Mat qrcode_labels; vector clustered_localization_points; int count_contours = num_qrcodes; if (all_contours_points.size() < size_t(num_qrcodes)) count_contours = (int)all_contours_points.size(); kmeans(all_contours_points, count_contours, qrcode_labels, TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1), count_contours, KMEANS_PP_CENTERS, clustered_localization_points); vector< vector< Point2f > > qrcode_clusters(count_contours); for (int i = 0; i < count_contours; i++) for (int j = 0; j < int(all_contours_points.size()); j++) { if (qrcode_labels.at(j, 0) == i) { qrcode_clusters[i].push_back(all_contours_points[j]); } } vector< vector< Point2f > > hull(count_contours); for (size_t i = 0; i < qrcode_clusters.size(); i++) convexHull(Mat(qrcode_clusters[i]), hull[i]); not_resized_loc_points = tmp_localization_points; resized_loc_points = tmp_localization_points; if (purpose == SHRINKING) { for (size_t j = 0; j < not_resized_loc_points.size(); j++) { not_resized_loc_points[j] *= coeff_expansion; } } else if (purpose == ZOOMING) { for (size_t j = 0; j < not_resized_loc_points.size(); j++) { not_resized_loc_points[j] /= coeff_expansion; } } true_points_group.resize(hull.size()); for (size_t j = 0; j < hull.size(); j++) { for (size_t i = 0; i < not_resized_loc_points.size(); i++) { if (pointPolygonTest(hull[j], not_resized_loc_points[i], true) > 0) { true_points_group[j].push_back(tmp_localization_points[i]); tmp_localization_points[i].x = -1; } } } vector copy; for (size_t j = 0; j < tmp_localization_points.size(); j++) { if (tmp_localization_points[j].x != -1) copy.push_back(tmp_localization_points[j]); } tmp_localization_points = copy; } bool QRDetectMulti::checkSets(vector >& true_points_group, vector >& true_points_group_copy, vector& tmp_localization_points) { for (size_t i = 0; i < true_points_group.size(); i++) { if (true_points_group[i].size() < 3) { for (size_t j = 0; j < true_points_group[i].size(); j++) tmp_localization_points.push_back(true_points_group[i][j]); true_points_group[i].clear(); } } vector< vector< Point2f > > temp_for_copy; for (size_t i = 0; i < true_points_group.size(); i++) { if (true_points_group[i].size() != 0) temp_for_copy.push_back(true_points_group[i]); } true_points_group = temp_for_copy; if (true_points_group.size() == 0) { true_points_group.push_back(tmp_localization_points); tmp_localization_points.clear(); } if (true_points_group.size() == 0) return false; if (true_points_group[0].size() < 3) return false; vector set_size(true_points_group.size()); for (size_t i = 0; i < true_points_group.size(); i++) { set_size[i] = int( (true_points_group[i].size() - 2 ) * (true_points_group[i].size() - 1) * true_points_group[i].size()) / 6; } vector< vector< Vec3i > > all_points(true_points_group.size()); for (size_t i = 0; i < true_points_group.size(); i++) all_points[i].resize(set_size[i]); int cur_cluster = 0; for (size_t i = 0; i < true_points_group.size(); i++) { cur_cluster = 0; for (size_t l = 0; l < true_points_group[i].size() - 2; l++) for (size_t j = l + 1; j < true_points_group[i].size() - 1; j++) for (size_t k = j + 1; k < true_points_group[i].size(); k++) { all_points[i][cur_cluster][0] = int(l); all_points[i][cur_cluster][1] = int(j); all_points[i][cur_cluster][2] = int(k); cur_cluster++; } } for (size_t i = 0; i < true_points_group.size(); i++) { std::sort(all_points[i].begin(), all_points[i].end(), compareSquare(true_points_group[i])); } if (true_points_group.size() == 1) { int check_number = 35; if (set_size[0] > check_number) set_size[0] = check_number; all_points[0].resize(set_size[0]); } int iter = (int)localization_points.size(); localization_points.resize(iter + true_points_group.size()); transformation_points.resize(iter + true_points_group.size()); true_points_group_copy = true_points_group; vector end(true_points_group.size()); for (size_t i = 0; i < true_points_group.size(); i++) end[i] = iter + set_size[i]; ParallelSearch parallelSearch(true_points_group, true_points_group_copy, iter, end, all_points, *this); parallel_for_(Range(0, (int)true_points_group.size()), parallelSearch); return true; } void QRDetectMulti::deleteUsedPoints(vector >& true_points_group, vector >& loc, vector& tmp_localization_points) { size_t iter = localization_points.size() - true_points_group.size() ; for (size_t s = 0; s < true_points_group.size(); s++) { if (localization_points[iter + s].empty()) loc[s][0].x = -2; if (loc[s].size() == 3) { if ((true_points_group.size() > 1) || ((true_points_group.size() == 1) && (tmp_localization_points.size() != 0)) ) { for (size_t j = 0; j < true_points_group[s].size(); j++) { if (loc[s][j].x != -1) { loc[s][j].x = -1; tmp_localization_points.push_back(true_points_group[s][j]); } } } } vector for_copy; for (size_t j = 0; j < loc[s].size(); j++) { if ((loc[s][j].x != -1) && (loc[s][j].x != -2) ) { for_copy.push_back(true_points_group[s][j]); } if ((loc[s][j].x == -2) && (true_points_group.size() > 1)) { tmp_localization_points.push_back(true_points_group[s][j]); } } true_points_group[s] = for_copy; } vector< vector< Point2f > > for_copy_loc; vector< vector< Point2f > > for_copy_trans; for (size_t i = 0; i < localization_points.size(); i++) { if ((localization_points[i].size() == 3) && (transformation_points[i].size() == 4)) { for_copy_loc.push_back(localization_points[i]); for_copy_trans.push_back(transformation_points[i]); } } localization_points = for_copy_loc; transformation_points = for_copy_trans; } bool QRDetectMulti::localization() { CV_TRACE_FUNCTION(); vector tmp_localization_points; int num_points = findNumberLocalizationPoints(tmp_localization_points); if (num_points < 3) return false; int num_qrcodes = divUp(num_points, 3); vector > true_points_group; findQRCodeContours(tmp_localization_points, true_points_group, num_qrcodes); for (int q = 0; q < num_qrcodes; q++) { vector > loc; size_t iter = localization_points.size(); if (!checkSets(true_points_group, loc, tmp_localization_points)) break; deleteUsedPoints(true_points_group, loc, tmp_localization_points); if ((localization_points.size() - iter) == 1) q--; if (((localization_points.size() - iter) == 0) && (tmp_localization_points.size() == 0) && (true_points_group.size() == 1) ) break; } if ((transformation_points.size() == 0) || (localization_points.size() == 0)) return false; return true; } bool QRDetectMulti::computeTransformationPoints(const size_t cur_ind) { CV_TRACE_FUNCTION(); if (localization_points[cur_ind].size() != 3) { return false; } vector locations, non_zero_elem[3], newHull; vector new_non_zero_elem[3]; for (size_t i = 0; i < 3 ; i++) { Mat mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1); uint8_t next_pixel, future_pixel = 255; int localization_point_x = cvRound(localization_points[cur_ind][i].x); int localization_point_y = cvRound(localization_points[cur_ind][i].y); int count_test_lines = 0, index = localization_point_x; for (; index < bin_barcode.cols - 1; index++) { next_pixel = bin_barcode.at(localization_point_y, index + 1); if (next_pixel == future_pixel) { future_pixel = static_cast(~future_pixel); count_test_lines++; if (count_test_lines == 2) { // TODO avoid drawing functions floodFill(bin_barcode, mask, Point(index + 1, localization_point_y), 255, 0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY); break; } } } Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1)); findNonZero(mask_roi, non_zero_elem[i]); newHull.insert(newHull.end(), non_zero_elem[i].begin(), non_zero_elem[i].end()); } convexHull(newHull, locations); for (size_t i = 0; i < locations.size(); i++) { for (size_t j = 0; j < 3; j++) { for (size_t k = 0; k < non_zero_elem[j].size(); k++) { if (locations[i] == non_zero_elem[j][k]) { new_non_zero_elem[j].push_back(locations[i]); } } } } if (new_non_zero_elem[0].size() == 0) return false; double pentagon_diag_norm = -1; Point2f down_left_edge_point, up_right_edge_point, up_left_edge_point; for (size_t i = 0; i < new_non_zero_elem[1].size(); i++) { for (size_t j = 0; j < new_non_zero_elem[2].size(); j++) { double temp_norm = norm(new_non_zero_elem[1][i] - new_non_zero_elem[2][j]); if (temp_norm > pentagon_diag_norm) { down_left_edge_point = new_non_zero_elem[1][i]; up_right_edge_point = new_non_zero_elem[2][j]; pentagon_diag_norm = temp_norm; } } } if (down_left_edge_point == Point2f(0, 0) || up_right_edge_point == Point2f(0, 0)) { return false; } double max_area = -1; up_left_edge_point = new_non_zero_elem[0][0]; for (size_t i = 0; i < new_non_zero_elem[0].size(); i++) { vector list_edge_points; list_edge_points.push_back(new_non_zero_elem[0][i]); list_edge_points.push_back(down_left_edge_point); list_edge_points.push_back(up_right_edge_point); double temp_area = fabs(contourArea(list_edge_points)); if (max_area < temp_area) { up_left_edge_point = new_non_zero_elem[0][i]; max_area = temp_area; } } Point2f down_max_delta_point, up_max_delta_point; double norm_down_max_delta = -1, norm_up_max_delta = -1; for (size_t i = 0; i < new_non_zero_elem[1].size(); i++) { double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[1][i]) + norm(down_left_edge_point - new_non_zero_elem[1][i]); if (norm_down_max_delta < temp_norm_delta) { down_max_delta_point = new_non_zero_elem[1][i]; norm_down_max_delta = temp_norm_delta; } } for (size_t i = 0; i < new_non_zero_elem[2].size(); i++) { double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[2][i]) + norm(up_right_edge_point - new_non_zero_elem[2][i]); if (norm_up_max_delta < temp_norm_delta) { up_max_delta_point = new_non_zero_elem[2][i]; norm_up_max_delta = temp_norm_delta; } } vector tmp_transformation_points; tmp_transformation_points.push_back(down_left_edge_point); tmp_transformation_points.push_back(up_left_edge_point); tmp_transformation_points.push_back(up_right_edge_point); tmp_transformation_points.push_back(intersectionLines( down_left_edge_point, down_max_delta_point, up_right_edge_point, up_max_delta_point)); transformation_points[cur_ind] = tmp_transformation_points; vector quadrilateral = getQuadrilateral(transformation_points[cur_ind]); transformation_points[cur_ind] = quadrilateral; return true; } bool ImplContour::detectMulti(InputArray in, OutputArray points) const { Mat gray; if (!checkQRInputImage(in, gray)) { points.release(); return false; } vector result; QRDetectMulti qrdet; qrdet.init(gray, epsX, epsY); if (!qrdet.localization()) { points.release(); return false; } vector > pnts2f = qrdet.getTransformationPoints(); for(size_t i = 0; i < pnts2f.size(); i++) for(size_t j = 0; j < pnts2f[i].size(); j++) result.push_back(pnts2f[i][j]); if (result.size() >= 4) { updatePointsResult(points, result); return true; } return false; } class ParallelDecodeProcess : public ParallelLoopBody { public: ParallelDecodeProcess(Mat& inarr_, vector& qrdec_, vector& decoded_info_, vector& straight_barcode_, vector< vector< Point2f > >& src_points_) : inarr(inarr_), qrdec(qrdec_), decoded_info(decoded_info_) , straight_barcode(straight_barcode_), src_points(src_points_) { // nothing } void operator()(const Range& range) const CV_OVERRIDE { for (int i = range.start; i < range.end; i++) { qrdec[i].init(inarr, src_points[i]); bool ok = qrdec[i].straightDecodingProcess(); if (ok) { decoded_info[i] = qrdec[i].getDecodeInformation(); straight_barcode[i] = qrdec[i].getStraightBarcode(); } else if (std::min(inarr.size().width, inarr.size().height) > 512) { const int min_side = std::min(inarr.size().width, inarr.size().height); qrdec[i].coeff_expansion = min_side / 512.f; const int width = cvRound(inarr.size().width / qrdec[i].coeff_expansion); const int height = cvRound(inarr.size().height / qrdec[i].coeff_expansion); Size new_size(width, height); Mat inarr2; resize(inarr, inarr2, new_size, 0, 0, INTER_AREA); for (size_t j = 0ull; j < 4ull; j++) { src_points[i][j] /= qrdec[i].coeff_expansion; } qrdec[i].init(inarr2, src_points[i]); ok = qrdec[i].straightDecodingProcess(); if (ok) { decoded_info[i] = qrdec[i].getDecodeInformation(); straight_barcode[i] = qrdec[i].getStraightBarcode(); for (size_t j = 0ull; j < qrdec[i].alignment_coords.size(); j++) qrdec[i].alignment_coords[j] *= qrdec[i].coeff_expansion; } } if (decoded_info[i].empty()) decoded_info[i] = ""; } } private: Mat& inarr; vector& qrdec; vector& decoded_info; vector& straight_barcode; vector< vector< Point2f > >& src_points; }; bool ImplContour::decodeMulti( InputArray img, InputArray points, CV_OUT std::vector& decoded_info, OutputArrayOfArrays straight_qrcode ) const { Mat inarr; if (!checkQRInputImage(img, inarr)) return false; CV_Assert(points.size().width > 0); CV_Assert((points.size().width % 4) == 0); vector< vector< Point2f > > src_points ; Mat qr_points = points.getMat(); qr_points = qr_points.reshape(2, 1); for (int i = 0; i < qr_points.size().width ; i += 4) { vector tempMat = qr_points.colRange(i, i + 4); if (contourArea(tempMat) > 0.0) { src_points.push_back(tempMat); } } CV_Assert(src_points.size() > 0); vector qrdec(src_points.size(), useAlignmentMarkers); vector straight_barcode(src_points.size()); vector info(src_points.size()); ParallelDecodeProcess parallelDecodeProcess(inarr, qrdec, info, straight_barcode, src_points); parallel_for_(Range(0, int(src_points.size())), parallelDecodeProcess); vector for_copy; for (size_t i = 0; i < straight_barcode.size(); i++) { if (!(straight_barcode[i].empty())) for_copy.push_back(straight_barcode[i]); } straight_barcode = for_copy; if (straight_qrcode.needed() && straight_barcode.size() == 0) { straight_qrcode.release(); } else if (straight_qrcode.needed()) { straight_qrcode.create(Size((int)straight_barcode.size(), 1), CV_8UC1); vector tmp_straight_qrcodes(straight_barcode.size()); for (size_t i = 0; i < straight_barcode.size(); i++) { straight_barcode[i].convertTo(tmp_straight_qrcodes[i], CV_8UC1); } straight_qrcode.assign(tmp_straight_qrcodes); } decoded_info.clear(); for (size_t i = 0; i < info.size(); i++) { decoded_info.push_back(info[i]); } alignmentMarkers.resize(src_points.size()); updateQrCorners.resize(src_points.size()*4ull); for (size_t i = 0ull; i < src_points.size(); i++) { alignmentMarkers[i] = qrdec[i].alignment_coords; for (size_t j = 0ull; j < 4ull; j++) updateQrCorners[i*4ull+j] = qrdec[i].getOriginalPoints()[j] * qrdec[i].coeff_expansion; } if (!decoded_info.empty()) return true; else return false; } bool ImplContour::detectAndDecodeMulti( InputArray img, CV_OUT std::vector& decoded_info, OutputArray points_, OutputArrayOfArrays straight_qrcode ) const { Mat inarr; if (!checkQRInputImage(img, inarr)) { points_.release(); return false; } vector points; bool ok = detectMulti(inarr, points); if (!ok) { points_.release(); return false; } updatePointsResult(points_, points); decoded_info.clear(); ok = decodeMulti(inarr, points, decoded_info, straight_qrcode); updatePointsResult(points_, updateQrCorners); return ok; } QRCodeDetector& QRCodeDetector::setUseAlignmentMarkers(bool useAlignmentMarkers) { (std::dynamic_pointer_cast)(p)->useAlignmentMarkers = useAlignmentMarkers; return *this; } QRCodeDetectorAruco::Params::Params() { minModuleSizeInPyramid = 4.f; maxRotation = (float)CV_PI/12.f; maxModuleSizeMismatch = 1.75f; maxTimingPatternMismatch = 2.f; maxPenalties = 0.4f; maxColorsMismatch = 0.2f; scaleTimingPatternScore = 0.9f; } namespace { struct FinderPatternInfo { FinderPatternInfo() {} FinderPatternInfo(const vector& patternPoints): points(patternPoints) { float minSin = 1.f; for (int i = 0; i < 4; i++) { center += points[i]; const Point2f side = points[i]-points[(i+1) % 4]; const float lenSide = sqrt(normL2Sqr(side)); minSin = min(minSin, abs(side.y) / lenSide); moduleSize += lenSide; } moduleSize /= (4.f * 7.f); // 4 sides, 7 modules in one side center /= 4.f; minQrAngle = asin(minSin); } enum TypePattern { CENTER, RIGHT, BOTTOM, NONE }; void setType(const TypePattern& _typePattern, const Point2f& centerQR) { typePattern = _typePattern; float bestLen = normL2Sqr(centerQR - points[0]); int id = 0; for (int i = 1; i < 4; i++) { float len = normL2Sqr(centerQR - points[i]); if (len < bestLen) { bestLen = len; id = i; } } innerCornerId = id; } Point2f getDirectionTo(const TypePattern& other) const { Point2f res = points[innerCornerId]; if (typePattern == TypePattern::CENTER) { if (other == TypePattern::RIGHT) { res -= points[(innerCornerId + 1) % 4]; res = 0.5f*(res + points[(innerCornerId + 3) % 4] - points[(innerCornerId + 2) % 4]); } else if (other == TypePattern::BOTTOM) { res -= points[(innerCornerId + 3) % 4]; res = 0.5f*(res + points[(innerCornerId + 1) % 4] - points[(innerCornerId + 2) % 4]); } } else if (typePattern == TypePattern::RIGHT && other == TypePattern::CENTER) { res = res - points[(innerCornerId + 3) % 4]; res = 0.5f*(res + points[(innerCornerId + 1) % 4] - points[(innerCornerId + 2) % 4]); } else if (typePattern == TypePattern::BOTTOM && other == TypePattern::CENTER) { res = res - points[(innerCornerId + 1) % 4]; res = 0.5f*(res + points[(innerCornerId + 3) % 4] - points[(innerCornerId + 2) % 4]); } return res; } bool checkTriangleAngle(const FinderPatternInfo& patternRight, const FinderPatternInfo& patternBottom, const float length2Vec) { // check the triangle angle btw right & center & bootom sides of QR code // the triangle angle shoud be between 30 and 150 degrees // abs(pi/2 - triangle_angle) should be less 60 degrees const float angle = abs((float)CV_PI/2.f - acos((center - patternRight.center).dot((center - patternBottom.center)) / length2Vec)); const float maxTriangleDeltaAngle = (float)CV_PI / 3.f; if (angle > maxTriangleDeltaAngle) { return false; } return true; } bool checkAngle(const FinderPatternInfo& other, const float maxRotation) { Point2f toOther = getDirectionTo(other.typePattern); Point2f toThis = other.getDirectionTo(typePattern); const float cosAngle = getCosAngle(toOther, toThis); if (cosAngle < 0.f && (CV_PI - acos(cosAngle)) / 2.f < maxRotation) { const float angleCenter = max(acos(getCosAngle(toOther, other.center - center)), acos(getCosAngle(toThis, center - other.center))); if (angleCenter < maxRotation) return true; } return false; } static float getCosAngle(const Point2f& vec1, const Point2f& vec2) { float cosAngle = vec1.dot(vec2) / (sqrt(normL2Sqr(vec1)) * sqrt(normL2Sqr(vec2))); cosAngle = std::max(-1.f, cosAngle); cosAngle = std::min(1.f, cosAngle); return cosAngle; } pair getQRCorner() const { if (typePattern == TypePattern::CENTER) { int id = (innerCornerId + 2) % 4; return std::make_pair(id, points[id]); } else if (typePattern != TypePattern::NONE) { int id = (innerCornerId + 2) % 4; return std::make_pair(id, points[id]); } return std::make_pair(-1, Point2f()); } pair getCornerForIntersection() const { if (typePattern == TypePattern::RIGHT) { int id = (innerCornerId + 3) % 4; return std::make_pair(id, points[id]); } else if (typePattern == TypePattern::BOTTOM) { int id = (innerCornerId + 1) % 4; return std::make_pair(id, points[id]); } return std::make_pair(-1, Point2f()); } Point2f getTimingStart(TypePattern direction) const { const float timingStartPosition = .5f; const float patternLength = 7.f; Point2f start = points[innerCornerId]*((patternLength - timingStartPosition)/patternLength); if (typePattern == TypePattern::CENTER && direction == TypePattern::RIGHT) { start += points[(innerCornerId + 3) % 4]*(timingStartPosition/patternLength); } else if (typePattern == TypePattern::CENTER && direction == TypePattern::BOTTOM) { start += points[(innerCornerId + 1) % 4]*(timingStartPosition/patternLength); } else if (typePattern == TypePattern::RIGHT && direction == TypePattern::CENTER) { start += points[(innerCornerId + 1) % 4]*(timingStartPosition/patternLength); } else if (typePattern == TypePattern::BOTTOM && direction == TypePattern::CENTER) { start += points[(innerCornerId + 3) % 4]*(timingStartPosition/patternLength); } return start + getDirectionTo(direction)/(patternLength*2.f); } // return total white+black modules in timing pattern, total white modules, penaltyPoints Point3i getTimingPatternScore(const Point2f& start, const Point2f& end, Mat &img, const float maxTimingPatternMismatch) const { Rect imageRect(Point(), img.size()); int penaltyPoints = 0; int colorCounters[2] = {0, 0}; if (imageRect.contains(Point(cvRound(end.x), cvRound(end.y)))) { LineIterator lineIterator(start, end); uint8_t prevValue = img.at(lineIterator.pos()); vector vec = {lineIterator.pos()}; // the starting position in the timing pattern is the white module white module next to the finder pattern. bool whiteColor = true; lineIterator++; colorCounters[whiteColor]++; for(int i = 1; i < lineIterator.count; i++, ++lineIterator) { const uint8_t value = img.at(lineIterator.pos()); if (prevValue != value) { const float dist = sqrt(normL2Sqr((Point2f)(vec.back()-lineIterator.pos()))); // check long and short lines in timing pattern const float relativeDiff = max(moduleSize, dist)/min(moduleSize, dist); if (relativeDiff > maxTimingPatternMismatch) { if (dist < moduleSize || relativeDiff < maxTimingPatternMismatch*8.f) penaltyPoints++; else penaltyPoints += cvRound(relativeDiff); } vec.push_back(lineIterator.pos()); prevValue = value; whiteColor ^= true; colorCounters[whiteColor]++; } } } return Point3i(colorCounters[0] + colorCounters[1], colorCounters[1], penaltyPoints); } FinderPatternInfo& operator*=(const float scale) { moduleSize *= scale; center *= scale; for (auto& point: points) point *= scale; return *this; } float moduleSize = 0.f; // Index of inner QR corner. // The inner corner is the corner closest to the center of the QR code. int innerCornerId = 0; float minQrAngle = 0.f; TypePattern typePattern = NONE; Point2f center; vector points; }; struct QRCode { QRCode() {} QRCode(const FinderPatternInfo& _centerPattern, const FinderPatternInfo& _rightPattern, const FinderPatternInfo& _bottomPattern, Point2f _center, float dist): centerPattern(_centerPattern), rightPattern(_rightPattern), bottomPattern(_bottomPattern), center(_center), distance(dist) { moduleSize = (centerPattern.moduleSize + rightPattern.moduleSize + bottomPattern.moduleSize) / 3.f; } vector getQRCorners() const { Point2f a1 = rightPattern.getQRCorner().second; Point2f a2 = rightPattern.getCornerForIntersection().second; Point2f b1 = bottomPattern.getQRCorner().second; Point2f b2 = bottomPattern.getCornerForIntersection().second; Point2f rightBottom = intersectionLines(a1, a2, b1, b2); return {centerPattern.getQRCorner().second, rightPattern.getQRCorner().second, rightBottom, bottomPattern.getQRCorner().second}; } static QRCode checkCompatibilityPattern(const FinderPatternInfo &_pattern1, const FinderPatternInfo& _pattern2, const FinderPatternInfo& _pattern3, Point3i& index, const QRCodeDetectorAruco::Params& qrDetectorParameters) { FinderPatternInfo pattern1 = _pattern1, pattern2 = _pattern2, pattern3 = _pattern3; Point2f centerQR; float distance = std::numeric_limits::max(); if (abs(pattern1.minQrAngle - pattern2.minQrAngle) > qrDetectorParameters.maxRotation || abs(pattern1.minQrAngle - pattern3.minQrAngle) > qrDetectorParameters.maxRotation) // check maxRotation return QRCode(pattern1, pattern2, pattern3, centerQR, distance); if (max(pattern1.moduleSize, pattern2.moduleSize) / min(pattern1.moduleSize, pattern2.moduleSize) > qrDetectorParameters.maxModuleSizeMismatch || max(pattern1.moduleSize, pattern3.moduleSize) / min(pattern1.moduleSize, pattern3.moduleSize) > qrDetectorParameters.maxModuleSizeMismatch) return QRCode(pattern1, pattern2, pattern3, centerQR, distance); // QR code: // center right // 1 ________ 2 // |_| |_| // | / | // | / | // | / | // |_ / | // |_|______| // 4 // bottom // sides length check const float side1 = sqrt(normL2Sqr(pattern1.center - pattern2.center)); const float side2 = sqrt(normL2Sqr(pattern1.center - pattern3.center)); const float side3 = sqrt(normL2Sqr(pattern2.center - pattern3.center)); std::array sides = {side1, side2, side3}; std::sort(sides.begin(), sides.end()); // check sides diff if (sides[1] / sides[0] < qrDetectorParameters.maxModuleSizeMismatch) { // find center pattern if (side1 > side2 && side1 > side3) { // centerPattern is pattern3 std::swap(pattern3, pattern1); // now pattern1 is centerPattern std::swap(index.x, index.z); } else if (side2 > side1 && side2 > side3) { // centerPattern is pattern2 std::swap(pattern2, pattern1); // now pattern1 is centerPattern std::swap(index.x, index.y); } // now pattern1 is centerPattern centerQR = (pattern2.center + pattern3.center) / 2.f; pattern1.setType(FinderPatternInfo::TypePattern::CENTER, centerQR); // check triangle angle if (pattern1.checkTriangleAngle(pattern2, pattern3, sides[0]*sides[1]) == false) return QRCode(pattern1, pattern2, pattern3, centerQR, distance); // check that pattern2 is right pattern2.setType(FinderPatternInfo::TypePattern::RIGHT, centerQR); bool ok = pattern1.checkAngle(pattern2, qrDetectorParameters.maxRotation); if (!ok) { // check that pattern3 is right pattern3.setType(FinderPatternInfo::TypePattern::RIGHT, centerQR); ok = pattern1.checkAngle(pattern3, qrDetectorParameters.maxRotation); if (ok) { std::swap(pattern3, pattern2); // now pattern2 is rightPattern std::swap(index.y, index.z); } } if (ok) { // check that pattern3 is bottom pattern3.setType(FinderPatternInfo::TypePattern::BOTTOM, centerQR); ok = pattern1.checkAngle(pattern3, qrDetectorParameters.maxRotation); if (ok) { // intersection check Point2f c1 = intersectionLines(pattern1.getQRCorner().second, pattern1.points[pattern1.innerCornerId], pattern2.getQRCorner().second, pattern2.points[pattern2.innerCornerId]); Point2f c2 = intersectionLines(pattern1.getQRCorner().second, pattern1.points[pattern1.innerCornerId], pattern3.getQRCorner().second, pattern3.points[pattern3.innerCornerId]); const float centerDistance = sqrt(normL2Sqr(c1 - c2)); distance = (sides[0] + sides[1] + centerDistance)*(sides[1] / sides[0]); } } } QRCode qrcode(pattern1, pattern2, pattern3, centerQR, distance); return qrcode; } int calculateScoreByTimingPattern(Mat &img, const QRCodeDetectorAruco::Params& params) { const int minModulesInTimingPattern = 4; const Point3i v1 = centerPattern.getTimingPatternScore(rightPattern.getTimingStart(FinderPatternInfo::CENTER), centerPattern.getTimingStart(FinderPatternInfo::RIGHT), img, params.maxTimingPatternMismatch); if ((float)v1.z > params.maxPenalties*v1.x || v1.x <= minModulesInTimingPattern || abs(v1.y / (float)v1.x - 0.5f) > params.maxColorsMismatch) return std::numeric_limits::max(); const Point3i v2 = centerPattern.getTimingPatternScore(bottomPattern.getTimingStart(FinderPatternInfo::CENTER), centerPattern.getTimingStart(FinderPatternInfo::BOTTOM), img, params.maxTimingPatternMismatch); if ((float)v2.z > params.maxPenalties*v2.x || v2.x <= minModulesInTimingPattern || abs(v2.y / (float)v2.x - 0.5f) > params.maxColorsMismatch) return std::numeric_limits::max(); // TODO: add v1, v2 check, add "y" checks float numModules = (sqrt(normL2Sqr((centerPattern.getQRCorner().second - rightPattern.getQRCorner().second)))*0.5f + sqrt(normL2Sqr((centerPattern.getQRCorner().second - bottomPattern.getQRCorner().second))*0.5f)) / moduleSize; const int sizeDelta = abs(cvRound(numModules) - (14 + v1.z < v2.z ? v1.x : v2.x)); const int colorDelta = abs(v1.x - v1.y - v1.y) + abs(v2.x - v2.y - v2.y); const int score = v1.z + v2.z + sizeDelta + colorDelta; return score; } QRCode& operator*=(const float scale) { centerPattern *= scale; rightPattern *= scale; bottomPattern *= scale; center *= scale; moduleSize *= scale; return *this; } FinderPatternInfo centerPattern; FinderPatternInfo rightPattern; FinderPatternInfo bottomPattern; Point2f center; float distance = std::numeric_limits::max(); int timingPatternScore = std::numeric_limits::max(); float moduleSize = 0.f; }; } // namespace static vector analyzeFinderPatterns(const vector > &corners, const Mat& img, const QRCodeDetectorAruco::Params& qrDetectorParameters) { vector qrCodes; vector patterns; if (img.empty()) return qrCodes; float maxModuleSize = 0.f; for (size_t i = 0ull; i < corners.size(); i++) { FinderPatternInfo pattern = FinderPatternInfo(corners[i]); // TODO: improve thinning Aruco markers bool isUniq = true; for (const FinderPatternInfo& tmp : patterns) { Point2f dist = pattern.center - tmp.center; if (max(abs(dist.x), abs(dist.y)) < 3.f * tmp.moduleSize) { isUniq = false; break; } } if (isUniq) { patterns.push_back(pattern); maxModuleSize = max(maxModuleSize, patterns.back().moduleSize); } } const int threshold = cvRound(qrDetectorParameters.minModuleSizeInPyramid * 12.5f) + (cvRound(qrDetectorParameters.minModuleSizeInPyramid * 12.5f) % 2 ? 0 : 1); int maxLevelPyramid = 0; while (maxModuleSize / 2.f > qrDetectorParameters.minModuleSizeInPyramid) { maxLevelPyramid++; maxModuleSize /= 2.f; } vector pyramid; buildPyramid(img, pyramid, maxLevelPyramid); // TODO: ADAPTIVE_THRESH_GAUSSIAN_C vs ADAPTIVE_THRESH_MEAN_C for (Mat& pyr: pyramid) { adaptiveThreshold(pyr, pyr, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, threshold, -1); } for (size_t i = 0ull; i < patterns.size(); i++) { QRCode qrCode; int indexes[3] = {0}; for (size_t j = i + 1ull; j < patterns.size(); j++) { for (size_t k = j + 1ull; k < patterns.size(); k++) { Point3i index((int)i, (int)j, (int)k); QRCode tmp = QRCode::checkCompatibilityPattern(patterns[i], patterns[j], patterns[k], index, qrDetectorParameters); if (tmp.distance != std::numeric_limits::max()) { int levelPyramid = 0; QRCode qrCopy = tmp; while (tmp.moduleSize / 2.f > qrDetectorParameters.minModuleSizeInPyramid) { tmp *= 0.5f; levelPyramid++; } qrCopy.timingPatternScore = tmp.calculateScoreByTimingPattern(pyramid[levelPyramid], qrDetectorParameters); if (qrCopy.timingPatternScore != std::numeric_limits::max() && qrCopy.timingPatternScore * qrDetectorParameters.scaleTimingPatternScore < (float)qrCode.timingPatternScore && qrCopy.distance < qrCode.distance) { qrCode = qrCopy; indexes[0] = (int)i; indexes[1] = (int)j; indexes[2] = (int)k; } } } } if (qrCode.distance != std::numeric_limits::max()) { qrCodes.push_back(qrCode); std::swap(patterns[indexes[2]], patterns.back()); patterns.pop_back(); std::swap(patterns[indexes[1]], patterns.back()); patterns.pop_back(); std::swap(patterns[indexes[0]], patterns.back()); patterns.pop_back(); i--; } } return qrCodes; } struct PimplQRAruco : public ImplContour { QRCodeDetectorAruco::Params qrParams; aruco::ArucoDetector arucoDetector; aruco::DetectorParameters arucoParams; PimplQRAruco() { Mat bits = Mat::ones(Size(5, 5), CV_8UC1); Mat(bits, Rect(1, 1, 3, 3)).setTo(Scalar(0)); Mat byteList = aruco::Dictionary::getByteListFromBits(bits); aruco::Dictionary dictionary = aruco::Dictionary(byteList, 5, 4); arucoParams.minMarkerPerimeterRate = 0.02; arucoDetector = aruco::ArucoDetector(dictionary, arucoParams); } bool detectMulti(InputArray in, OutputArray points) const override { Mat gray; if (!checkQRInputImage(in, gray)) { points.release(); return false; } vector result; vector > corners; vector ids; arucoDetector.detectMarkers(gray, corners, ids); if (corners.size() >= 3ull) { vector qrCodes = analyzeFinderPatterns(corners, gray.clone(), qrParams); if (qrCodes.size() == 0ull) return false; for (auto& qr : qrCodes) { for (Point2f& corner : qr.getQRCorners()) { result.push_back(corner); } } } if (result.size() >= 4) { updatePointsResult(points, result); return true; } return false; } bool detect(InputArray img, OutputArray points) const override { vector corners, result; bool flag = detectMulti(img, corners); CV_Assert((int)corners.size() % 4 == 0); Point2f imageCenter(((float)img.cols())/2.f, ((float)img.rows())/2.f); size_t minQrId = 0ull; float minDist = std::numeric_limits::max(); for (size_t i = 0ull; i < corners.size(); i += 4ull) { Point2f qrCenter((corners[i] + corners[i+1ull] + corners[i+2ull] + corners[i+3ull]) / 4.f); float dist = sqrt(normL2Sqr(qrCenter - imageCenter)); if (dist < minDist) { minQrId = i; minDist = dist; } } if (flag) { result = {corners[minQrId], corners[minQrId+1ull], corners[minQrId+2ull], corners[minQrId+3ull]}; updatePointsResult(points, result); } return flag; } }; QRCodeDetectorAruco::QRCodeDetectorAruco() { p = makePtr(); } QRCodeDetectorAruco::QRCodeDetectorAruco(const QRCodeDetectorAruco::Params& params) { p = makePtr(); std::dynamic_pointer_cast(p)->qrParams = params; } const QRCodeDetectorAruco::Params& QRCodeDetectorAruco::getDetectorParameters() const { return std::dynamic_pointer_cast(p)->qrParams; } QRCodeDetectorAruco& QRCodeDetectorAruco::setDetectorParameters(const QRCodeDetectorAruco::Params& params) { std::dynamic_pointer_cast(p)->qrParams = params; return *this; } aruco::DetectorParameters QRCodeDetectorAruco::getArucoParameters() { return std::dynamic_pointer_cast(p)->arucoParams; } void QRCodeDetectorAruco::setArucoParameters(const aruco::DetectorParameters& params) { std::dynamic_pointer_cast(p)->arucoParams = params; } } // namespace