// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2018 Intel Corporation #include "../test_precomp.hpp" #include #include #include //suppress_unused_warning namespace opencv_test { using Mat = cv::gapi::own::Mat; using Dims = std::vector; namespace { inline std::size_t multiply_dims(Dims const& dims){ return std::accumulate(dims.begin(), dims.end(), static_cast(1), std::multiplies()); } } TEST(OwnMat, DefaultConstruction) { Mat m; ASSERT_EQ(m.data, nullptr); ASSERT_EQ(m.cols, 0); ASSERT_EQ(m.rows, 0); ASSERT_EQ(m.cols, 0); ASSERT_EQ(m.type(), 0); ASSERT_EQ(m.depth(), 0); ASSERT_TRUE(m.dims.empty()); ASSERT_TRUE(m.empty()); } TEST(OwnMat, Create) { auto size = cv::gapi::own::Size{32,16}; Mat m; m.create(size, CV_8UC1); ASSERT_NE(m.data, nullptr); ASSERT_EQ((cv::gapi::own::Size{m.cols, m.rows}), size); ASSERT_EQ(m.total(), static_cast(size.height) * size.width); ASSERT_EQ(m.type(), CV_8UC1); ASSERT_EQ(m.depth(), CV_8U); ASSERT_EQ(m.channels(), 1); ASSERT_EQ(m.elemSize(), sizeof(uint8_t)); ASSERT_EQ(m.step, sizeof(uint8_t) * m.cols); ASSERT_TRUE(m.dims.empty()); ASSERT_FALSE(m.empty()); } TEST(OwnMat, CreateND) { Dims dims = {1,1,32,32}; Mat m; m.create(dims, CV_32F); ASSERT_NE(nullptr , m.data ); ASSERT_EQ((cv::gapi::own::Size{0,0}), (cv::gapi::own::Size{m.cols, m.rows})); ASSERT_EQ(multiply_dims(dims), m.total()); ASSERT_EQ(CV_32F , m.type() ); ASSERT_EQ(CV_32F , m.depth() ); ASSERT_EQ(-1 , m.channels()); ASSERT_EQ(sizeof(float) , m.elemSize()); ASSERT_EQ(0u , m.step ); ASSERT_EQ(dims , m.dims ); ASSERT_FALSE(m.empty()); } TEST(OwnMat, CreateOverload) { auto size = cv::gapi::own::Size{32,16}; Mat m; m.create(size.height,size.width, CV_8UC1); ASSERT_NE(m.data, nullptr); ASSERT_EQ((cv::Size{m.cols, m.rows}), size); ASSERT_EQ(m.total(), static_cast(size.height) * size.width); ASSERT_EQ(m.type(), CV_8UC1); ASSERT_EQ(m.depth(), CV_8U); ASSERT_EQ(m.channels(), 1); ASSERT_EQ(m.elemSize(), sizeof(uint8_t)); ASSERT_EQ(m.step, sizeof(uint8_t) * m.cols); ASSERT_TRUE(m.dims.empty()); ASSERT_FALSE(m.empty()); } TEST(OwnMat, Create3chan) { auto size = cv::Size{32,16}; Mat m; m.create(size, CV_8UC3); ASSERT_NE(m.data, nullptr); ASSERT_EQ((cv::Size{m.cols, m.rows}), size); ASSERT_EQ(m.type(), CV_8UC3); ASSERT_EQ(m.depth(), CV_8U); ASSERT_EQ(m.channels(), 3); ASSERT_EQ(m.elemSize(), 3 * sizeof(uint8_t)); ASSERT_EQ(m.step, 3* sizeof(uint8_t) * m.cols); ASSERT_TRUE(m.dims.empty()); ASSERT_FALSE(m.empty()); } struct NonEmptyMat { cv::gapi::own::Size size{32,16}; Mat m; NonEmptyMat() { m.create(size, CV_8UC1); } }; struct OwnMatSharedSemantics : NonEmptyMat, ::testing::Test {}; namespace { auto state_of = [](Mat const& mat) { return std::make_tuple( mat.data, cv::Size{mat.cols, mat.rows}, mat.type(), mat.depth(), mat.channels(), mat.dims, mat.empty() ); }; void ensure_mats_are_same(Mat const& copy, Mat const& m){ EXPECT_NE(copy.data, nullptr); EXPECT_EQ(state_of(copy), state_of(m)); } } TEST_F(OwnMatSharedSemantics, CopyConstruction) { Mat copy(m); ensure_mats_are_same(copy, m); } TEST_F(OwnMatSharedSemantics, CopyAssignment) { Mat copy; copy = m; ensure_mats_are_same(copy, m); } struct OwnMatMoveSemantics : NonEmptyMat, ::testing::Test { Mat& moved_from = m; decltype(state_of(moved_from)) initial_state = state_of(moved_from); void ensure_state_moved_to(Mat const& moved_to) { EXPECT_EQ(state_of(moved_to), initial_state); EXPECT_EQ(state_of(moved_from), state_of(Mat{})); } }; TEST_F(OwnMatMoveSemantics, MoveConstruction) { Mat moved_to(std::move(moved_from)); ensure_state_moved_to(moved_to); } TEST_F(OwnMatMoveSemantics, MoveAssignment) { Mat moved_to(std::move(moved_from)); ensure_state_moved_to(moved_to); } struct OwnMatNonOwningView : NonEmptyMat, ::testing::Test { decltype(state_of(m)) initial_state = state_of(m); void TearDown() override { EXPECT_EQ(state_of(m), initial_state)<<"State of the source matrix changed?"; //ASAN should complain here if memory is freed here (e.g. by bug in non owning logic of own::Mat) volatile uchar dummy = m.data[0]; cv::util::suppress_unused_warning(dummy); } }; TEST_F(OwnMatNonOwningView, Construction) { Mat non_owning_view(m.rows, m.cols, m.type(), static_cast(m.data)); ensure_mats_are_same(non_owning_view, m); } TEST_F(OwnMatNonOwningView, CopyConstruction) { Mat non_owning_view{m.rows, m.cols, m.type(), static_cast(m.data)}; Mat non_owning_view_copy = non_owning_view; ensure_mats_are_same(non_owning_view_copy, m); } TEST_F(OwnMatNonOwningView, Assignment) { Mat non_owning_view{m.rows, m.cols, m.type(), static_cast(m.data)}; Mat non_owning_view_copy; non_owning_view_copy = non_owning_view; ensure_mats_are_same(non_owning_view_copy, m); } TEST(OwnMatConversion, WithStep) { constexpr int width = 8; constexpr int height = 8; constexpr int stepInPixels = 16; std::array data; for (size_t i = 0; i < data.size(); i++) { data[i] = static_cast(i); } cv::Mat cvMat(cv::Size{width, height}, CV_32S, data.data(), stepInPixels * sizeof(int)); auto ownMat = to_own(cvMat); auto cvMatFromOwn = cv::gapi::own::to_ocv(ownMat); EXPECT_EQ(0, cvtest::norm(cvMat, cvMatFromOwn, NORM_INF)) << cvMat << std::endl << (cvMat != cvMatFromOwn); } TEST(OwnMatConversion, WithND) { const Dims dims = {1,3,8,8}; std::vector data(dims[0]*dims[1]*dims[2]*dims[3]); for (size_t i = 0u; i < data.size(); i++) { data[i] = static_cast(i); } cv::Mat cvMat(dims, CV_8U, data.data()); auto ownMat = to_own(cvMat); auto cvMatFromOwn = cv::gapi::own::to_ocv(ownMat); EXPECT_EQ(0, cv::norm(cvMat, cvMatFromOwn, NORM_INF)) << cvMat << std::endl << (cvMat != cvMatFromOwn); } TEST(OwnMat, PtrWithStep) { constexpr int width = 8; constexpr int height = 8; constexpr int stepInPixels = 16; std::array data; for (size_t i = 0; i < data.size(); i++) { data[i] = static_cast(i); } Mat mat(height, width, CV_32S, data.data(), stepInPixels * sizeof(int)); EXPECT_EQ(& data[0], reinterpret_cast(mat.ptr(0))); EXPECT_EQ(& data[1], reinterpret_cast(mat.ptr(0, 1))); EXPECT_EQ(& data[stepInPixels], reinterpret_cast(mat.ptr(1))); EXPECT_EQ(& data[stepInPixels +1], reinterpret_cast(mat.ptr(1,1))); auto const& cmat = mat; EXPECT_EQ(& data[0], reinterpret_cast(cmat.ptr(0))); EXPECT_EQ(& data[1], reinterpret_cast(cmat.ptr(0, 1))); EXPECT_EQ(& data[stepInPixels], reinterpret_cast(cmat.ptr(1))); EXPECT_EQ(& data[stepInPixels +1], reinterpret_cast(cmat.ptr(1,1))); } TEST(OwnMat, CopyToWithStep) { constexpr int width = 8; constexpr int height = 8; constexpr int stepInPixels = 16; std::array data; for (size_t i = 0; i < data.size(); i++) { data[i] = static_cast(i); } Mat mat(height, width, CV_32S, data.data(), stepInPixels * sizeof(int)); Mat dst; mat.copyTo(dst); EXPECT_NE(mat.data, dst.data); EXPECT_EQ(0, cvtest::norm(to_ocv(mat), to_ocv(dst), NORM_INF)) << to_ocv(mat) << std::endl << (to_ocv(mat) != to_ocv(dst)); } TEST(OwnMat, AssignNDtoRegular) { const auto sz = cv::gapi::own::Size{32,32}; const auto dims = Dims{1,3,224,224}; Mat a; a.create(sz, CV_8U); const auto *old_ptr = a.data; ASSERT_NE(nullptr , a.data); ASSERT_EQ(sz , (cv::gapi::own::Size{a.cols, a.rows})); ASSERT_EQ(static_cast(sz.width) * sz.height, a.total()); ASSERT_EQ(CV_8U , a.type()); ASSERT_EQ(CV_8U , a.depth()); ASSERT_EQ(1 , a.channels()); ASSERT_EQ(sizeof(uint8_t), a.elemSize()); ASSERT_EQ(static_cast(sz.width), a.step); ASSERT_TRUE(a.dims.empty()); Mat b; b.create(dims, CV_32F); a = b; ASSERT_NE(nullptr , a.data); ASSERT_NE(old_ptr , a.data); ASSERT_EQ((cv::gapi::own::Size{0,0}), (cv::gapi::own::Size{a.cols, a.rows})); ASSERT_EQ(multiply_dims(dims), a.total()); ASSERT_EQ(CV_32F , a.type()); ASSERT_EQ(CV_32F , a.depth()); ASSERT_EQ(-1 , a.channels()); ASSERT_EQ(sizeof(float), a.elemSize()); ASSERT_EQ(0u , a.step); ASSERT_EQ(dims , a.dims); } TEST(OwnMat, AssignRegularToND) { const auto sz = cv::gapi::own::Size{32,32}; const auto dims = Dims{1,3,224,224}; Mat a; a.create(dims, CV_32F); const auto *old_ptr = a.data; ASSERT_NE(nullptr , a.data); ASSERT_EQ((cv::gapi::own::Size{0,0}), (cv::gapi::own::Size{a.cols, a.rows})); ASSERT_EQ(multiply_dims(dims), a.total()); ASSERT_EQ(CV_32F , a.type()); ASSERT_EQ(CV_32F , a.depth()); ASSERT_EQ(-1 , a.channels()); ASSERT_EQ(sizeof(float), a.elemSize()); ASSERT_EQ(0u , a.step); ASSERT_EQ(dims , a.dims); Mat b; b.create(sz, CV_8U); a = b; ASSERT_NE(nullptr , a.data); ASSERT_NE(old_ptr , a.data); ASSERT_EQ(sz , (cv::gapi::own::Size{a.cols, a.rows})); ASSERT_EQ(static_cast(sz.width) * sz.height, a.total()); ASSERT_EQ(CV_8U , a.type()); ASSERT_EQ(CV_8U , a.depth()); ASSERT_EQ(1 , a.channels()); ASSERT_EQ(sizeof(uint8_t), a.elemSize()); ASSERT_EQ(static_cast(sz.width), a.step); ASSERT_TRUE(a.dims.empty()); } TEST(OwnMat, CopyNDtoRegular) { const auto sz = cv::gapi::own::Size{32,32}; const auto dims = Dims{1,3,224,224}; Mat a; a.create(sz, CV_8U); const auto *old_ptr = a.data; ASSERT_NE(nullptr , a.data); ASSERT_EQ(sz , (cv::gapi::own::Size{a.cols, a.rows})); ASSERT_EQ(static_cast(sz.width) * sz.height, a.total()); ASSERT_EQ(CV_8U , a.type()); ASSERT_EQ(CV_8U , a.depth()); ASSERT_EQ(1 , a.channels()); ASSERT_EQ(sizeof(uint8_t), a.elemSize()); ASSERT_EQ(static_cast(sz.width), a.step); ASSERT_TRUE(a.dims.empty()); Mat b; b.create(dims, CV_32F); b.copyTo(a); ASSERT_NE(nullptr , a.data); ASSERT_NE(old_ptr , a.data); ASSERT_NE(b.data , a.data); ASSERT_EQ((cv::gapi::own::Size{0,0}), (cv::gapi::own::Size{a.cols, a.rows})); ASSERT_EQ(multiply_dims(dims), a.total()); ASSERT_EQ(CV_32F , a.type()); ASSERT_EQ(CV_32F , a.depth()); ASSERT_EQ(-1 , a.channels()); ASSERT_EQ(sizeof(float), a.elemSize()); ASSERT_EQ(0u , a.step); ASSERT_EQ(dims , a.dims); } TEST(OwnMat, CopyRegularToND) { const auto sz = cv::gapi::own::Size{32,32}; const auto dims = Dims{1,3,224,224}; Mat a; a.create(dims, CV_32F); const auto *old_ptr = a.data; ASSERT_NE(nullptr , a.data); ASSERT_EQ((cv::gapi::own::Size{0,0}), (cv::gapi::own::Size{a.cols, a.rows})); ASSERT_EQ(multiply_dims(dims), a.total()); ASSERT_EQ(CV_32F , a.type()); ASSERT_EQ(CV_32F , a.depth()); ASSERT_EQ(-1 , a.channels()); ASSERT_EQ(sizeof(float), a.elemSize()); ASSERT_EQ(0u , a.step); ASSERT_EQ(dims , a.dims); Mat b; b.create(sz, CV_8U); b.copyTo(a); ASSERT_NE(nullptr , a.data); ASSERT_NE(old_ptr , a.data); ASSERT_NE(b.data , a.data); ASSERT_EQ(sz , (cv::gapi::own::Size{a.cols, a.rows})); ASSERT_EQ(static_cast(sz.width) * sz.height, a.total()); ASSERT_EQ(CV_8U , a.type()); ASSERT_EQ(CV_8U , a.depth()); ASSERT_EQ(1 , a.channels()); ASSERT_EQ(sizeof(uint8_t), a.elemSize()); ASSERT_EQ(static_cast(sz.width), a.step); ASSERT_TRUE(a.dims.empty()); } TEST(OwnMat, ScalarAssign32SC1) { constexpr int width = 8; constexpr int height = 8; constexpr int stepInPixels = 16; std::array data; for (size_t i = 0; i < data.size(); i++) { data[i] = static_cast(i); } Mat mat(height, width, CV_32S, data.data(), stepInPixels * sizeof(data[0])); mat = cv::gapi::own::Scalar{-1}; std::array expected; for (size_t row = 0; row < height; row++) { for (size_t col = 0; col < stepInPixels; col++) { auto index = row*stepInPixels + col; expected[index] = col < width ? -1 : static_cast(index); } } auto cmp_result_mat = (cv::Mat{height, stepInPixels, CV_32S, data.data()} != cv::Mat{height, stepInPixels, CV_32S, expected.data()}); EXPECT_EQ(0, cvtest::norm(cmp_result_mat, NORM_INF)) << cmp_result_mat; } TEST(OwnMat, ScalarAssign8UC1) { constexpr int width = 8; constexpr int height = 8; constexpr int stepInPixels = 16; std::array data; for (size_t i = 0; i < data.size(); i++) { data[i] = static_cast(i); } Mat mat(height, width, CV_8U, data.data(), stepInPixels * sizeof(data[0])); mat = cv::gapi::own::Scalar{-1}; std::array expected; for (size_t row = 0; row < height; row++) { for (size_t col = 0; col < stepInPixels; col++) { auto index = row*stepInPixels + col; expected[index] = col < width ? cv::saturate_cast(-1) : static_cast(index); } } auto cmp_result_mat = (cv::Mat{height, stepInPixels, CV_8U, data.data()} != cv::Mat{height, stepInPixels, CV_8U, expected.data()}); EXPECT_EQ(0, cvtest::norm(cmp_result_mat, NORM_INF)) << cmp_result_mat; } TEST(OwnMat, ScalarAssignND) { std::vector dims = {1,1000}; Mat m; m.create(dims, CV_32F); m = cv::gapi::own::Scalar{-1}; const float *ptr = reinterpret_cast(m.data); for (auto i = 0u; i < m.total(); i++) { EXPECT_EQ(-1.f, ptr[i]); } } TEST(OwnMat, ScalarAssign8UC3) { constexpr auto cv_type = CV_8SC3; constexpr int channels = 3; constexpr int width = 8; constexpr int height = 8; constexpr int stepInPixels = 16; std::array data; for (size_t i = 0; i < data.size(); i+= channels) { data[i + 0] = static_cast(10 * i + 0); data[i + 1] = static_cast(10 * i + 1); data[i + 2] = static_cast(10 * i + 2); } Mat mat(height, width, cv_type, data.data(), channels * stepInPixels * sizeof(data[0])); mat = cv::gapi::own::Scalar{-10, -11, -12}; std::array expected; for (size_t row = 0; row < height; row++) { for (size_t col = 0; col < stepInPixels; col++) { int index = static_cast(channels * (row*stepInPixels + col)); expected[index + 0] = static_cast(col < width ? -10 : 10 * index + 0); expected[index + 1] = static_cast(col < width ? -11 : 10 * index + 1); expected[index + 2] = static_cast(col < width ? -12 : 10 * index + 2); } } auto cmp_result_mat = (cv::Mat{height, stepInPixels, cv_type, data.data()} != cv::Mat{height, stepInPixels, cv_type, expected.data()}); EXPECT_EQ(0, cvtest::norm(cmp_result_mat, NORM_INF)) << cmp_result_mat << std::endl << "data : " << std::endl << cv::Mat{height, stepInPixels, cv_type, data.data()} << std::endl << "expected : " << std::endl << cv::Mat{height, stepInPixels, cv_type, expected.data()} << std::endl; } TEST(OwnMat, ROIView) { constexpr int width = 8; constexpr int height = 8; constexpr int stepInPixels = 16; std::array data; for (size_t i = 0; i < data.size(); i++) { data[i] = static_cast(i); } // std::cout< expected; for (size_t row = 0; row < 4; row++) { for (size_t col = 0; col < 4; col++) { expected[row*4 +col] = static_cast(stepInPixels * (2 + row) + 2 + col); } } Mat mat(height, width, CV_8U, data.data(), stepInPixels * sizeof(data[0])); Mat roi_view (mat, cv::gapi::own::Rect{2,2,4,4}); // std::cout<