/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "../precomp.hpp" #include "layers_common.hpp" #include "op_halide.hpp" #include "opencl_kernels_dnn.hpp" #include #include using std::max; #ifdef HAVE_OPENCL using namespace cv::dnn::ocl4dnn; #endif namespace cv { namespace dnn { class SoftMaxLayerImpl : public SoftmaxLayer { public: SoftMaxLayerImpl(const LayerParams& params) { axisRaw = params.get("axis", 1); logSoftMax = params.get("log_softmax", false); setParamsFrom(params); } #ifdef HAVE_OPENCL Ptr > softmaxOp; #endif bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const { bool inplace = Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals); MatShape shape = inputs[0]; int cAxis = clamp(axisRaw, shape.size()); shape[cAxis] = 1; internals.assign(1, shape); return inplace; } virtual bool supportBackend(int backendId) { return backendId == DNN_BACKEND_DEFAULT || backendId == DNN_BACKEND_HALIDE && haveHalide() && axisRaw == 1; } #ifdef HAVE_OPENCL bool forward_ocl(std::vector &inputs, std::vector &outputs, std::vector &internals) { if (softmaxOp.empty()) { OCL4DNNSoftmaxConfig config; config.in_shape = shape(*inputs[0]); config.axis = axisRaw; config.channels = inputs[0]->size[axisRaw]; softmaxOp = Ptr >(new OCL4DNNSoftmax(config)); } UMat srcMat, dstMat; srcMat = inputs[0]->getUMat(ACCESS_READ); dstMat = outputs[0].getUMat(ACCESS_WRITE); if (!logSoftMax && softmaxOp->Forward(srcMat, dstMat)) return true; const Mat &src = *inputs[0]; UMat bufMat = internals[0].getUMat(ACCESS_WRITE); srcMat.copyTo(dstMat); int axis = clamp(axisRaw, src.dims); size_t outerSize = src.total(0, axis); size_t channels = src.size[axis]; size_t innerSize = src.total(axis + 1); String buildOpts = String("-DT=") + ocl::typeToStr(src.type()); ocl::Kernel kmax, ksub, ksum, kdiv; if (!kmax.create("kernel_channel_max", ocl::dnn::softmax_oclsrc, buildOpts)) return false; if (!ksub.create("kernel_channel_subtract", ocl::dnn::softmax_oclsrc, buildOpts)) return false; if (!ksum.create("kernel_channel_sum", ocl::dnn::softmax_oclsrc, buildOpts)) return false; if (logSoftMax) buildOpts += " -DLOG_SOFTMAX "; if (!kdiv.create("kernel_channel_div", ocl::dnn::softmax_oclsrc, buildOpts)) return false; size_t wgSize = ocl::Device::getDefault().maxWorkGroupSize(); size_t bufSize = internals[0].total(); size_t totalSize = src.total(); kmax.args((int)outerSize, (int)channels, (int)innerSize, ocl::KernelArg::PtrReadOnly(dstMat), ocl::KernelArg::PtrReadWrite(bufMat)); if (!kmax.run(1, &bufSize, &wgSize, false)) return false; ksub.args((int)totalSize, (int)outerSize, (int)channels, (int)innerSize, ocl::KernelArg::PtrReadOnly(bufMat), ocl::KernelArg::PtrReadWrite(dstMat)); if (!ksub.run(1, &totalSize, &wgSize, false)) return false; cv::exp(dstMat, dstMat); ksum.args((int)outerSize, (int)channels, (int)innerSize, ocl::KernelArg::PtrReadOnly(dstMat), ocl::KernelArg::PtrReadWrite(bufMat)); if (!ksum.run(1, &bufSize, &wgSize, false)) return false; kdiv.args((int)totalSize, (int)outerSize, (int)channels, (int)innerSize, ocl::KernelArg::PtrReadOnly(bufMat), ocl::KernelArg::PtrReadWrite(dstMat)); if (!kdiv.run(1, &totalSize, &wgSize, false)) return false; return true; } #endif void forward(std::vector &inputs, std::vector &outputs, std::vector &internals) { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) && OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()), forward_ocl(inputs, outputs, internals)) const Mat &src = *inputs[0]; Mat &dst = outputs[0]; int axis = clamp(axisRaw, src.dims); size_t outerSize = src.total(0, axis), channels = src.size[axis], innerSize = src.total(axis + 1); CV_Assert(src.type() == CV_32F); CV_Assert(src.isContinuous() && dst.isContinuous()); const float *srcPtr = src.ptr(); float *dstPtr = dst.ptr(); float *bufPtr = internals[0].ptr(); size_t outerStep = src.total(axis); size_t cnStep = src.total(axis + 1); //compute max along axis for (size_t outerDim = 0; outerDim < outerSize; outerDim++) { size_t srcOffset = outerDim * outerStep; size_t bufOffset = outerDim * cnStep; memcpy(bufPtr + bufOffset, srcPtr + srcOffset, innerSize * sizeof(float)); for (size_t cnDim = 1; cnDim < channels; cnDim++) { for (size_t i = 0; i < innerSize; i++) bufPtr[bufOffset + i] = std::max(bufPtr[bufOffset + i], srcPtr[srcOffset + cnDim * cnStep + i]); } } //subtract max for (size_t outerDim = 0; outerDim < outerSize; outerDim++) { size_t srcOffset = outerDim * outerStep; size_t bufOffset = outerDim * cnStep; for (size_t cnDim = 0; cnDim < channels; cnDim++) { const int offset = srcOffset + cnDim * cnStep; for (size_t i = 0; i < innerSize; i++) dstPtr[offset + i] = srcPtr[offset + i] - bufPtr[bufOffset + i]; } } cv::exp(dst, dst); for (size_t outerDim = 0; outerDim < outerSize; outerDim++) { size_t srcOffset = outerDim * outerStep; size_t bufOffset = outerDim * cnStep; //sum exp along axis for (size_t i = 0; i < innerSize; i++) bufPtr[bufOffset + i] = 0.f; for (size_t cnDim = 0; cnDim < channels; cnDim++) { const int offset = srcOffset + cnDim * cnStep; for (size_t i = 0; i < innerSize; i++) bufPtr[bufOffset + i] += dstPtr[offset + i]; } //divide by computed sum for (size_t cnDim = 0; cnDim < channels; cnDim++) { const int offset = srcOffset + cnDim * cnStep; for (size_t i = 0; i < innerSize; i++) dstPtr[offset + i] /= bufPtr[bufOffset + i]; } if (logSoftMax) { for (size_t cnDim = 0; cnDim < channels; cnDim++) { const int offset = srcOffset + cnDim * cnStep; for (size_t i = 0; i < innerSize; i++) dstPtr[offset + i] = log(dstPtr[offset + i]); } } } } virtual Ptr initHalide(const std::vector > &inputs) { #ifdef HAVE_HALIDE Halide::Buffer inputBuffer = halideBuffer(inputs[0]); int inW, inH, inC, inN; getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN); if (inW != 1 || inH != 1) CV_Error(cv::Error::StsNotImplemented, "Halide backend for SoftMax with spatial size " "more than 1x1 is not implemented"); Halide::Var x("x"), y("y"), c("c"), n("n"); Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name)); Halide::Func expInput("expInput"); Halide::RDom r(0, inW, 0, inH, 0, inC); expInput(x, y, c, n) = exp(inputBuffer(x, y, c, n)); Halide::Expr globalSum = sum(expInput(r.x, r.y, r.z, n)); top(x, y, c, n) = expInput(x, y, c, n) / globalSum; return Ptr(new HalideBackendNode(top)); #endif // HAVE_HALIDE return Ptr(); } int64 getFLOPS(const std::vector &inputs, const std::vector &outputs) const { (void)outputs; // suppress unused variable warning int64 flops = 0; for (int i = 0; i < inputs.size(); i++) { flops += 4*total(inputs[i]); } return flops; } int axisRaw; }; Ptr SoftmaxLayer::create(const LayerParams& params) { return Ptr(new SoftMaxLayerImpl(params)); } } }