''' SVN and KNearest digit recognition. Sample loads a dataset of handwritten digits from 'digits.png'. Then it trains a SVN and KNearest classifiers on it and evaluates their accuracy. Moment-based image deskew is used to improve the recognition accuracy. Usage: digits.py ''' import numpy as np import cv2 from multiprocessing.pool import ThreadPool from common import clock, mosaic SZ = 20 # size of each digit is SZ x SZ CLASS_N = 10 DIGITS_FN = 'digits.png' def load_digits(fn): print 'loading "%s" ...' % fn digits_img = cv2.imread(fn, 0) h, w = digits_img.shape digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)] digits = np.array(digits).reshape(-1, SZ, SZ) labels = np.repeat(np.arange(CLASS_N), len(digits)/CLASS_N) return digits, labels def deskew(img): m = cv2.moments(img) if abs(m['mu02']) < 1e-2: return img.copy() skew = m['mu11']/m['mu02'] M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]]) img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR) return img class StatModel(object): def load(self, fn): self.model.load(fn) def save(self, fn): self.model.save(fn) class KNearest(StatModel): def __init__(self, k = 3): self.k = k self.model = cv2.KNearest() def train(self, samples, responses): self.model = cv2.KNearest() self.model.train(samples, responses) def predict(self, samples): retval, results, neigh_resp, dists = self.model.find_nearest(samples, self.k) return results.ravel() class SVM(StatModel): def __init__(self, C = 1, gamma = 0.5): self.params = dict( kernel_type = cv2.SVM_RBF, svm_type = cv2.SVM_C_SVC, C = C, gamma = gamma ) self.model = cv2.SVM() def train(self, samples, responses): self.model = cv2.SVM() self.model.train(samples, responses, params = self.params) def predict(self, samples): return self.model.predict_all(samples).ravel() def evaluate_model(model, digits, samples, labels): resp = model.predict(samples) err = (labels != resp).mean() print 'error: %.2f %%' % (err*100) confusion = np.zeros((10, 10), np.int32) for i, j in zip(labels, resp): confusion[i, j] += 1 print 'confusion matrix:' print confusion print vis = [] for img, flag in zip(digits, resp == labels): img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) if not flag: img[...,:2] = 0 vis.append(img) return mosaic(25, vis) if __name__ == '__main__': print __doc__ digits, labels = load_digits(DIGITS_FN) print 'preprocessing...' # shuffle digits rand = np.random.RandomState(12345) shuffle = rand.permutation(len(digits)) digits, labels = digits[shuffle], labels[shuffle] digits2 = map(deskew, digits) samples = np.float32(digits2).reshape(-1, SZ*SZ) / 255.0 train_n = int(0.9*len(samples)) cv2.imshow('test set', mosaic(25, digits[train_n:])) digits_train, digits_test = np.split(digits2, [train_n]) samples_train, samples_test = np.split(samples, [train_n]) labels_train, labels_test = np.split(labels, [train_n]) print 'training KNearest...' model = KNearest(k=1) model.train(samples_train, labels_train) vis = evaluate_model(model, digits_test, samples_test, labels_test) cv2.imshow('KNearest test', vis) print 'training SVM...' model = SVM(C=4.66, gamma=0.08) model.train(samples_train, labels_train) vis = evaluate_model(model, digits_test, samples_test, labels_test) cv2.imshow('SVM test', vis) print 'saving SVM as "digits_svm.dat"...' model.save('digits_svm.dat') cv2.waitKey(0)