/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::cuda; int cv::cuda::getCudaEnabledDeviceCount() { #ifndef HAVE_CUDA return 0; #else int count; cudaError_t error = cudaGetDeviceCount(&count); if (error == cudaErrorInsufficientDriver) return -1; if (error == cudaErrorNoDevice) return 0; cudaSafeCall( error ); return count; #endif } void cv::cuda::setDevice(int device) { #ifndef HAVE_CUDA (void) device; throw_no_cuda(); #else cudaFree(0); cudaSafeCall( cudaSetDevice(device) ); #endif } int cv::cuda::getDevice() { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else int device; cudaSafeCall( cudaGetDevice(&device) ); return device; #endif } void cv::cuda::resetDevice() { #ifndef HAVE_CUDA throw_no_cuda(); #else cudaSafeCall( cudaDeviceReset() ); #endif } bool cv::cuda::deviceSupports(FeatureSet feature_set) { #ifndef HAVE_CUDA (void) feature_set; throw_no_cuda(); return false; #else static int versions[] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; static const int cache_size = static_cast(sizeof(versions) / sizeof(versions[0])); const int devId = getDevice(); int version; if (devId < cache_size && versions[devId] >= 0) { version = versions[devId]; } else { DeviceInfo dev(devId); version = dev.majorVersion() * 10 + dev.minorVersion(); if (devId < cache_size) versions[devId] = version; } return TargetArchs::builtWith(feature_set) && (version >= feature_set); #endif } //////////////////////////////////////////////////////////////////////// // TargetArchs #ifdef HAVE_CUDA namespace { class CudaArch { public: CudaArch(); bool builtWith(FeatureSet feature_set) const; bool hasPtx(int major, int minor) const; bool hasBin(int major, int minor) const; bool hasEqualOrLessPtx(int major, int minor) const; bool hasEqualOrGreaterPtx(int major, int minor) const; bool hasEqualOrGreaterBin(int major, int minor) const; private: static void fromStr(const char* set_as_str, std::vector& arr); std::vector bin; std::vector ptx; std::vector features; }; const CudaArch cudaArch; CudaArch::CudaArch() { fromStr(CUDA_ARCH_BIN, bin); fromStr(CUDA_ARCH_PTX, ptx); fromStr(CUDA_ARCH_FEATURES, features); } bool CudaArch::builtWith(FeatureSet feature_set) const { return !features.empty() && (features.back() >= feature_set); } bool CudaArch::hasPtx(int major, int minor) const { return std::find(ptx.begin(), ptx.end(), major * 10 + minor) != ptx.end(); } bool CudaArch::hasBin(int major, int minor) const { return std::find(bin.begin(), bin.end(), major * 10 + minor) != bin.end(); } bool CudaArch::hasEqualOrLessPtx(int major, int minor) const { return !ptx.empty() && (ptx.front() <= major * 10 + minor); } bool CudaArch::hasEqualOrGreaterPtx(int major, int minor) const { return !ptx.empty() && (ptx.back() >= major * 10 + minor); } bool CudaArch::hasEqualOrGreaterBin(int major, int minor) const { return !bin.empty() && (bin.back() >= major * 10 + minor); } void CudaArch::fromStr(const char* set_as_str, std::vector& arr) { arr.clear(); const size_t len = strlen(set_as_str); size_t pos = 0; while (pos < len) { if (isspace(set_as_str[pos])) { ++pos; } else { int cur_value; int chars_read; int args_read = sscanf(set_as_str + pos, "%d%n", &cur_value, &chars_read); CV_Assert( args_read == 1 ); arr.push_back(cur_value); pos += chars_read; } } std::sort(arr.begin(), arr.end()); } } #endif bool cv::cuda::TargetArchs::builtWith(cv::cuda::FeatureSet feature_set) { #ifndef HAVE_CUDA (void) feature_set; throw_no_cuda(); return false; #else return cudaArch.builtWith(feature_set); #endif } bool cv::cuda::TargetArchs::hasPtx(int major, int minor) { #ifndef HAVE_CUDA (void) major; (void) minor; throw_no_cuda(); return false; #else return cudaArch.hasPtx(major, minor); #endif } bool cv::cuda::TargetArchs::hasBin(int major, int minor) { #ifndef HAVE_CUDA (void) major; (void) minor; throw_no_cuda(); return false; #else return cudaArch.hasBin(major, minor); #endif } bool cv::cuda::TargetArchs::hasEqualOrLessPtx(int major, int minor) { #ifndef HAVE_CUDA (void) major; (void) minor; throw_no_cuda(); return false; #else return cudaArch.hasEqualOrLessPtx(major, minor); #endif } bool cv::cuda::TargetArchs::hasEqualOrGreaterPtx(int major, int minor) { #ifndef HAVE_CUDA (void) major; (void) minor; throw_no_cuda(); return false; #else return cudaArch.hasEqualOrGreaterPtx(major, minor); #endif } bool cv::cuda::TargetArchs::hasEqualOrGreaterBin(int major, int minor) { #ifndef HAVE_CUDA (void) major; (void) minor; throw_no_cuda(); return false; #else return cudaArch.hasEqualOrGreaterBin(major, minor); #endif } //////////////////////////////////////////////////////////////////////// // DeviceInfo #ifdef HAVE_CUDA namespace { class DeviceProps { public: DeviceProps(); const cudaDeviceProp* get(int devID) const; private: std::vector props_; }; DeviceProps::DeviceProps() { int count = getCudaEnabledDeviceCount(); if (count > 0) { props_.resize(count); for (int devID = 0; devID < count; ++devID) { cudaSafeCall( cudaGetDeviceProperties(&props_[devID], devID) ); } } } const cudaDeviceProp* DeviceProps::get(int devID) const { CV_Assert( static_cast(devID) < props_.size() ); return &props_[devID]; } DeviceProps& deviceProps() { static DeviceProps props; return props; } } #endif const char* cv::cuda::DeviceInfo::name() const { #ifndef HAVE_CUDA throw_no_cuda(); return ""; #else return deviceProps().get(device_id_)->name; #endif } size_t cv::cuda::DeviceInfo::totalGlobalMem() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->totalGlobalMem; #endif } size_t cv::cuda::DeviceInfo::sharedMemPerBlock() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->sharedMemPerBlock; #endif } int cv::cuda::DeviceInfo::regsPerBlock() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->regsPerBlock; #endif } int cv::cuda::DeviceInfo::warpSize() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->warpSize; #endif } size_t cv::cuda::DeviceInfo::memPitch() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->memPitch; #endif } int cv::cuda::DeviceInfo::maxThreadsPerBlock() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->maxThreadsPerBlock; #endif } Vec3i cv::cuda::DeviceInfo::maxThreadsDim() const { #ifndef HAVE_CUDA throw_no_cuda(); return Vec3i(); #else return Vec3i(deviceProps().get(device_id_)->maxThreadsDim); #endif } Vec3i cv::cuda::DeviceInfo::maxGridSize() const { #ifndef HAVE_CUDA throw_no_cuda(); return Vec3i(); #else return Vec3i(deviceProps().get(device_id_)->maxGridSize); #endif } int cv::cuda::DeviceInfo::clockRate() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->clockRate; #endif } size_t cv::cuda::DeviceInfo::totalConstMem() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->totalConstMem; #endif } int cv::cuda::DeviceInfo::majorVersion() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->major; #endif } int cv::cuda::DeviceInfo::minorVersion() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->minor; #endif } size_t cv::cuda::DeviceInfo::textureAlignment() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->textureAlignment; #endif } size_t cv::cuda::DeviceInfo::texturePitchAlignment() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->texturePitchAlignment; #endif } int cv::cuda::DeviceInfo::multiProcessorCount() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->multiProcessorCount; #endif } bool cv::cuda::DeviceInfo::kernelExecTimeoutEnabled() const { #ifndef HAVE_CUDA throw_no_cuda(); return false; #else return deviceProps().get(device_id_)->kernelExecTimeoutEnabled != 0; #endif } bool cv::cuda::DeviceInfo::integrated() const { #ifndef HAVE_CUDA throw_no_cuda(); return false; #else return deviceProps().get(device_id_)->integrated != 0; #endif } bool cv::cuda::DeviceInfo::canMapHostMemory() const { #ifndef HAVE_CUDA throw_no_cuda(); return false; #else return deviceProps().get(device_id_)->canMapHostMemory != 0; #endif } DeviceInfo::ComputeMode cv::cuda::DeviceInfo::computeMode() const { #ifndef HAVE_CUDA throw_no_cuda(); return ComputeModeDefault; #else static const ComputeMode tbl[] = { ComputeModeDefault, ComputeModeExclusive, ComputeModeProhibited, ComputeModeExclusiveProcess }; return tbl[deviceProps().get(device_id_)->computeMode]; #endif } int cv::cuda::DeviceInfo::maxTexture1D() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->maxTexture1D; #endif } int cv::cuda::DeviceInfo::maxTexture1DMipmap() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else #if CUDA_VERSION >= 5000 return deviceProps().get(device_id_)->maxTexture1DMipmap; #else CV_Error(Error::StsNotImplemented, "This function requires CUDA 5.0"); return 0; #endif #endif } int cv::cuda::DeviceInfo::maxTexture1DLinear() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->maxTexture1DLinear; #endif } Vec2i cv::cuda::DeviceInfo::maxTexture2D() const { #ifndef HAVE_CUDA throw_no_cuda(); return Vec2i(); #else return Vec2i(deviceProps().get(device_id_)->maxTexture2D); #endif } Vec2i cv::cuda::DeviceInfo::maxTexture2DMipmap() const { #ifndef HAVE_CUDA throw_no_cuda(); return Vec2i(); #else #if CUDA_VERSION >= 5000 return Vec2i(deviceProps().get(device_id_)->maxTexture2DMipmap); #else CV_Error(Error::StsNotImplemented, "This function requires CUDA 5.0"); return Vec2i(); #endif #endif } Vec3i cv::cuda::DeviceInfo::maxTexture2DLinear() const { #ifndef HAVE_CUDA throw_no_cuda(); return Vec3i(); #else return Vec3i(deviceProps().get(device_id_)->maxTexture2DLinear); #endif } Vec2i cv::cuda::DeviceInfo::maxTexture2DGather() const { #ifndef HAVE_CUDA throw_no_cuda(); return Vec2i(); #else return Vec2i(deviceProps().get(device_id_)->maxTexture2DGather); #endif } Vec3i cv::cuda::DeviceInfo::maxTexture3D() const { #ifndef HAVE_CUDA throw_no_cuda(); return Vec3i(); #else return Vec3i(deviceProps().get(device_id_)->maxTexture3D); #endif } int cv::cuda::DeviceInfo::maxTextureCubemap() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->maxTextureCubemap; #endif } Vec2i cv::cuda::DeviceInfo::maxTexture1DLayered() const { #ifndef HAVE_CUDA throw_no_cuda(); return Vec2i(); #else return Vec2i(deviceProps().get(device_id_)->maxTexture1DLayered); #endif } Vec3i cv::cuda::DeviceInfo::maxTexture2DLayered() const { #ifndef HAVE_CUDA throw_no_cuda(); return Vec3i(); #else return Vec3i(deviceProps().get(device_id_)->maxTexture2DLayered); #endif } Vec2i cv::cuda::DeviceInfo::maxTextureCubemapLayered() const { #ifndef HAVE_CUDA throw_no_cuda(); return Vec2i(); #else return Vec2i(deviceProps().get(device_id_)->maxTextureCubemapLayered); #endif } int cv::cuda::DeviceInfo::maxSurface1D() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->maxSurface1D; #endif } Vec2i cv::cuda::DeviceInfo::maxSurface2D() const { #ifndef HAVE_CUDA throw_no_cuda(); return Vec2i(); #else return Vec2i(deviceProps().get(device_id_)->maxSurface2D); #endif } Vec3i cv::cuda::DeviceInfo::maxSurface3D() const { #ifndef HAVE_CUDA throw_no_cuda(); return Vec3i(); #else return Vec3i(deviceProps().get(device_id_)->maxSurface3D); #endif } Vec2i cv::cuda::DeviceInfo::maxSurface1DLayered() const { #ifndef HAVE_CUDA throw_no_cuda(); return Vec2i(); #else return Vec2i(deviceProps().get(device_id_)->maxSurface1DLayered); #endif } Vec3i cv::cuda::DeviceInfo::maxSurface2DLayered() const { #ifndef HAVE_CUDA throw_no_cuda(); return Vec3i(); #else return Vec3i(deviceProps().get(device_id_)->maxSurface2DLayered); #endif } int cv::cuda::DeviceInfo::maxSurfaceCubemap() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->maxSurfaceCubemap; #endif } Vec2i cv::cuda::DeviceInfo::maxSurfaceCubemapLayered() const { #ifndef HAVE_CUDA throw_no_cuda(); return Vec2i(); #else return Vec2i(deviceProps().get(device_id_)->maxSurfaceCubemapLayered); #endif } size_t cv::cuda::DeviceInfo::surfaceAlignment() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->surfaceAlignment; #endif } bool cv::cuda::DeviceInfo::concurrentKernels() const { #ifndef HAVE_CUDA throw_no_cuda(); return false; #else return deviceProps().get(device_id_)->concurrentKernels != 0; #endif } bool cv::cuda::DeviceInfo::ECCEnabled() const { #ifndef HAVE_CUDA throw_no_cuda(); return false; #else return deviceProps().get(device_id_)->ECCEnabled != 0; #endif } int cv::cuda::DeviceInfo::pciBusID() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->pciBusID; #endif } int cv::cuda::DeviceInfo::pciDeviceID() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->pciDeviceID; #endif } int cv::cuda::DeviceInfo::pciDomainID() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->pciDomainID; #endif } bool cv::cuda::DeviceInfo::tccDriver() const { #ifndef HAVE_CUDA throw_no_cuda(); return false; #else return deviceProps().get(device_id_)->tccDriver != 0; #endif } int cv::cuda::DeviceInfo::asyncEngineCount() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->asyncEngineCount; #endif } bool cv::cuda::DeviceInfo::unifiedAddressing() const { #ifndef HAVE_CUDA throw_no_cuda(); return false; #else return deviceProps().get(device_id_)->unifiedAddressing != 0; #endif } int cv::cuda::DeviceInfo::memoryClockRate() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->memoryClockRate; #endif } int cv::cuda::DeviceInfo::memoryBusWidth() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->memoryBusWidth; #endif } int cv::cuda::DeviceInfo::l2CacheSize() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->l2CacheSize; #endif } int cv::cuda::DeviceInfo::maxThreadsPerMultiProcessor() const { #ifndef HAVE_CUDA throw_no_cuda(); return 0; #else return deviceProps().get(device_id_)->maxThreadsPerMultiProcessor; #endif } void cv::cuda::DeviceInfo::queryMemory(size_t& _totalMemory, size_t& _freeMemory) const { #ifndef HAVE_CUDA (void) _totalMemory; (void) _freeMemory; throw_no_cuda(); #else int prevDeviceID = getDevice(); if (prevDeviceID != device_id_) setDevice(device_id_); cudaSafeCall( cudaMemGetInfo(&_freeMemory, &_totalMemory) ); if (prevDeviceID != device_id_) setDevice(prevDeviceID); #endif } bool cv::cuda::DeviceInfo::isCompatible() const { #ifndef HAVE_CUDA throw_no_cuda(); return false; #else // Check PTX compatibility if (TargetArchs::hasEqualOrLessPtx(majorVersion(), minorVersion())) return true; // Check BIN compatibility for (int i = minorVersion(); i >= 0; --i) if (TargetArchs::hasBin(majorVersion(), i)) return true; return false; #endif } //////////////////////////////////////////////////////////////////////// // print info #ifdef HAVE_CUDA namespace { int convertSMVer2Cores(int major, int minor) { // Defines for GPU Architecture types (using the SM version to determine the # of cores per SM typedef struct { int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM minor version int Cores; } SMtoCores; SMtoCores gpuArchCoresPerSM[] = { { 0x10, 8 }, { 0x11, 8 }, { 0x12, 8 }, { 0x13, 8 }, { 0x20, 32 }, { 0x21, 48 }, {0x30, 192}, {0x35, 192}, { -1, -1 } }; int index = 0; while (gpuArchCoresPerSM[index].SM != -1) { if (gpuArchCoresPerSM[index].SM == ((major << 4) + minor) ) return gpuArchCoresPerSM[index].Cores; index++; } return -1; } } #endif void cv::cuda::printCudaDeviceInfo(int device) { #ifndef HAVE_CUDA (void) device; throw_no_cuda(); #else int count = getCudaEnabledDeviceCount(); bool valid = (device >= 0) && (device < count); int beg = valid ? device : 0; int end = valid ? device+1 : count; printf("*** CUDA Device Query (Runtime API) version (CUDART static linking) *** \n\n"); printf("Device count: %d\n", count); int driverVersion = 0, runtimeVersion = 0; cudaSafeCall( cudaDriverGetVersion(&driverVersion) ); cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) ); const char *computeMode[] = { "Default (multiple host threads can use ::cudaSetDevice() with device simultaneously)", "Exclusive (only one host thread in one process is able to use ::cudaSetDevice() with this device)", "Prohibited (no host thread can use ::cudaSetDevice() with this device)", "Exclusive Process (many threads in one process is able to use ::cudaSetDevice() with this device)", "Unknown", NULL }; for(int dev = beg; dev < end; ++dev) { cudaDeviceProp prop; cudaSafeCall( cudaGetDeviceProperties(&prop, dev) ); printf("\nDevice %d: \"%s\"\n", dev, prop.name); printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100); printf(" CUDA Capability Major/Minor version number: %d.%d\n", prop.major, prop.minor); printf(" Total amount of global memory: %.0f MBytes (%llu bytes)\n", (float)prop.totalGlobalMem/1048576.0f, (unsigned long long) prop.totalGlobalMem); int cores = convertSMVer2Cores(prop.major, prop.minor); if (cores > 0) printf(" (%2d) Multiprocessors x (%2d) CUDA Cores/MP: %d CUDA Cores\n", prop.multiProcessorCount, cores, cores * prop.multiProcessorCount); printf(" GPU Clock Speed: %.2f GHz\n", prop.clockRate * 1e-6f); printf(" Max Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d,%d), 3D=(%d,%d,%d)\n", prop.maxTexture1D, prop.maxTexture2D[0], prop.maxTexture2D[1], prop.maxTexture3D[0], prop.maxTexture3D[1], prop.maxTexture3D[2]); printf(" Max Layered Texture Size (dim) x layers 1D=(%d) x %d, 2D=(%d,%d) x %d\n", prop.maxTexture1DLayered[0], prop.maxTexture1DLayered[1], prop.maxTexture2DLayered[0], prop.maxTexture2DLayered[1], prop.maxTexture2DLayered[2]); printf(" Total amount of constant memory: %u bytes\n", (int)prop.totalConstMem); printf(" Total amount of shared memory per block: %u bytes\n", (int)prop.sharedMemPerBlock); printf(" Total number of registers available per block: %d\n", prop.regsPerBlock); printf(" Warp size: %d\n", prop.warpSize); printf(" Maximum number of threads per block: %d\n", prop.maxThreadsPerBlock); printf(" Maximum sizes of each dimension of a block: %d x %d x %d\n", prop.maxThreadsDim[0], prop.maxThreadsDim[1], prop.maxThreadsDim[2]); printf(" Maximum sizes of each dimension of a grid: %d x %d x %d\n", prop.maxGridSize[0], prop.maxGridSize[1], prop.maxGridSize[2]); printf(" Maximum memory pitch: %u bytes\n", (int)prop.memPitch); printf(" Texture alignment: %u bytes\n", (int)prop.textureAlignment); printf(" Concurrent copy and execution: %s with %d copy engine(s)\n", (prop.deviceOverlap ? "Yes" : "No"), prop.asyncEngineCount); printf(" Run time limit on kernels: %s\n", prop.kernelExecTimeoutEnabled ? "Yes" : "No"); printf(" Integrated GPU sharing Host Memory: %s\n", prop.integrated ? "Yes" : "No"); printf(" Support host page-locked memory mapping: %s\n", prop.canMapHostMemory ? "Yes" : "No"); printf(" Concurrent kernel execution: %s\n", prop.concurrentKernels ? "Yes" : "No"); printf(" Alignment requirement for Surfaces: %s\n", prop.surfaceAlignment ? "Yes" : "No"); printf(" Device has ECC support enabled: %s\n", prop.ECCEnabled ? "Yes" : "No"); printf(" Device is using TCC driver mode: %s\n", prop.tccDriver ? "Yes" : "No"); printf(" Device supports Unified Addressing (UVA): %s\n", prop.unifiedAddressing ? "Yes" : "No"); printf(" Device PCI Bus ID / PCI location ID: %d / %d\n", prop.pciBusID, prop.pciDeviceID ); printf(" Compute Mode:\n"); printf(" %s \n", computeMode[prop.computeMode]); } printf("\n"); printf("deviceQuery, CUDA Driver = CUDART"); printf(", CUDA Driver Version = %d.%d", driverVersion / 1000, driverVersion % 100); printf(", CUDA Runtime Version = %d.%d", runtimeVersion/1000, runtimeVersion%100); printf(", NumDevs = %d\n\n", count); fflush(stdout); #endif } void cv::cuda::printShortCudaDeviceInfo(int device) { #ifndef HAVE_CUDA (void) device; throw_no_cuda(); #else int count = getCudaEnabledDeviceCount(); bool valid = (device >= 0) && (device < count); int beg = valid ? device : 0; int end = valid ? device+1 : count; int driverVersion = 0, runtimeVersion = 0; cudaSafeCall( cudaDriverGetVersion(&driverVersion) ); cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) ); for(int dev = beg; dev < end; ++dev) { cudaDeviceProp prop; cudaSafeCall( cudaGetDeviceProperties(&prop, dev) ); const char *arch_str = prop.major < 2 ? " (not Fermi)" : ""; printf("Device %d: \"%s\" %.0fMb", dev, prop.name, (float)prop.totalGlobalMem/1048576.0f); printf(", sm_%d%d%s", prop.major, prop.minor, arch_str); int cores = convertSMVer2Cores(prop.major, prop.minor); if (cores > 0) printf(", %d cores", cores * prop.multiProcessorCount); printf(", Driver/Runtime ver.%d.%d/%d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100); } fflush(stdout); #endif } //////////////////////////////////////////////////////////////////////// // Error handling #ifdef HAVE_CUDA namespace { #define error_entry(entry) { entry, #entry } struct ErrorEntry { int code; const char* str; }; struct ErrorEntryComparer { int code; ErrorEntryComparer(int code_) : code(code_) {} bool operator()(const ErrorEntry& e) const { return e.code == code; } }; const ErrorEntry npp_errors [] = { #if defined (_MSC_VER) error_entry( NPP_NOT_SUFFICIENT_COMPUTE_CAPABILITY ), #endif #if NPP_VERSION < 5500 error_entry( NPP_BAD_ARG_ERROR ), error_entry( NPP_COEFF_ERROR ), error_entry( NPP_RECT_ERROR ), error_entry( NPP_QUAD_ERROR ), error_entry( NPP_MEMFREE_ERR ), error_entry( NPP_MEMSET_ERR ), error_entry( NPP_MEM_ALLOC_ERR ), error_entry( NPP_HISTO_NUMBER_OF_LEVELS_ERROR ), error_entry( NPP_MIRROR_FLIP_ERR ), error_entry( NPP_INVALID_INPUT ), error_entry( NPP_POINTER_ERROR ), error_entry( NPP_WARNING ), error_entry( NPP_ODD_ROI_WARNING ), #else error_entry( NPP_INVALID_HOST_POINTER_ERROR ), error_entry( NPP_INVALID_DEVICE_POINTER_ERROR ), error_entry( NPP_LUT_PALETTE_BITSIZE_ERROR ), error_entry( NPP_ZC_MODE_NOT_SUPPORTED_ERROR ), error_entry( NPP_MEMFREE_ERROR ), error_entry( NPP_MEMSET_ERROR ), error_entry( NPP_QUALITY_INDEX_ERROR ), error_entry( NPP_HISTOGRAM_NUMBER_OF_LEVELS_ERROR ), error_entry( NPP_CHANNEL_ORDER_ERROR ), error_entry( NPP_ZERO_MASK_VALUE_ERROR ), error_entry( NPP_QUADRANGLE_ERROR ), error_entry( NPP_RECTANGLE_ERROR ), error_entry( NPP_COEFFICIENT_ERROR ), error_entry( NPP_NUMBER_OF_CHANNELS_ERROR ), error_entry( NPP_COI_ERROR ), error_entry( NPP_DIVISOR_ERROR ), error_entry( NPP_CHANNEL_ERROR ), error_entry( NPP_STRIDE_ERROR ), error_entry( NPP_ANCHOR_ERROR ), error_entry( NPP_MASK_SIZE_ERROR ), error_entry( NPP_MIRROR_FLIP_ERROR ), error_entry( NPP_MOMENT_00_ZERO_ERROR ), error_entry( NPP_THRESHOLD_NEGATIVE_LEVEL_ERROR ), error_entry( NPP_THRESHOLD_ERROR ), error_entry( NPP_CONTEXT_MATCH_ERROR ), error_entry( NPP_FFT_FLAG_ERROR ), error_entry( NPP_FFT_ORDER_ERROR ), error_entry( NPP_SCALE_RANGE_ERROR ), error_entry( NPP_DATA_TYPE_ERROR ), error_entry( NPP_OUT_OFF_RANGE_ERROR ), error_entry( NPP_DIVIDE_BY_ZERO_ERROR ), error_entry( NPP_MEMORY_ALLOCATION_ERR ), error_entry( NPP_RANGE_ERROR ), error_entry( NPP_BAD_ARGUMENT_ERROR ), error_entry( NPP_NO_MEMORY_ERROR ), error_entry( NPP_ERROR_RESERVED ), error_entry( NPP_NO_OPERATION_WARNING ), error_entry( NPP_DIVIDE_BY_ZERO_WARNING ), error_entry( NPP_WRONG_INTERSECTION_ROI_WARNING ), #endif error_entry( NPP_NOT_SUPPORTED_MODE_ERROR ), error_entry( NPP_ROUND_MODE_NOT_SUPPORTED_ERROR ), error_entry( NPP_RESIZE_NO_OPERATION_ERROR ), error_entry( NPP_LUT_NUMBER_OF_LEVELS_ERROR ), error_entry( NPP_TEXTURE_BIND_ERROR ), error_entry( NPP_WRONG_INTERSECTION_ROI_ERROR ), error_entry( NPP_NOT_EVEN_STEP_ERROR ), error_entry( NPP_INTERPOLATION_ERROR ), error_entry( NPP_RESIZE_FACTOR_ERROR ), error_entry( NPP_HAAR_CLASSIFIER_PIXEL_MATCH_ERROR ), error_entry( NPP_MEMCPY_ERROR ), error_entry( NPP_ALIGNMENT_ERROR ), error_entry( NPP_STEP_ERROR ), error_entry( NPP_SIZE_ERROR ), error_entry( NPP_NULL_POINTER_ERROR ), error_entry( NPP_CUDA_KERNEL_EXECUTION_ERROR ), error_entry( NPP_NOT_IMPLEMENTED_ERROR ), error_entry( NPP_ERROR ), error_entry( NPP_NO_ERROR ), error_entry( NPP_SUCCESS ), error_entry( NPP_WRONG_INTERSECTION_QUAD_WARNING ), error_entry( NPP_MISALIGNED_DST_ROI_WARNING ), error_entry( NPP_AFFINE_QUAD_INCORRECT_WARNING ), error_entry( NPP_DOUBLE_SIZE_WARNING ) }; const size_t npp_error_num = sizeof(npp_errors) / sizeof(npp_errors[0]); const ErrorEntry cu_errors [] = { error_entry( CUDA_SUCCESS ), error_entry( CUDA_ERROR_INVALID_VALUE ), error_entry( CUDA_ERROR_OUT_OF_MEMORY ), error_entry( CUDA_ERROR_NOT_INITIALIZED ), error_entry( CUDA_ERROR_DEINITIALIZED ), error_entry( CUDA_ERROR_PROFILER_DISABLED ), error_entry( CUDA_ERROR_PROFILER_NOT_INITIALIZED ), error_entry( CUDA_ERROR_PROFILER_ALREADY_STARTED ), error_entry( CUDA_ERROR_PROFILER_ALREADY_STOPPED ), error_entry( CUDA_ERROR_NO_DEVICE ), error_entry( CUDA_ERROR_INVALID_DEVICE ), error_entry( CUDA_ERROR_INVALID_IMAGE ), error_entry( CUDA_ERROR_INVALID_CONTEXT ), error_entry( CUDA_ERROR_CONTEXT_ALREADY_CURRENT ), error_entry( CUDA_ERROR_MAP_FAILED ), error_entry( CUDA_ERROR_UNMAP_FAILED ), error_entry( CUDA_ERROR_ARRAY_IS_MAPPED ), error_entry( CUDA_ERROR_ALREADY_MAPPED ), error_entry( CUDA_ERROR_NO_BINARY_FOR_GPU ), error_entry( CUDA_ERROR_ALREADY_ACQUIRED ), error_entry( CUDA_ERROR_NOT_MAPPED ), error_entry( CUDA_ERROR_NOT_MAPPED_AS_ARRAY ), error_entry( CUDA_ERROR_NOT_MAPPED_AS_POINTER ), error_entry( CUDA_ERROR_ECC_UNCORRECTABLE ), error_entry( CUDA_ERROR_UNSUPPORTED_LIMIT ), error_entry( CUDA_ERROR_CONTEXT_ALREADY_IN_USE ), error_entry( CUDA_ERROR_INVALID_SOURCE ), error_entry( CUDA_ERROR_FILE_NOT_FOUND ), error_entry( CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND ), error_entry( CUDA_ERROR_SHARED_OBJECT_INIT_FAILED ), error_entry( CUDA_ERROR_OPERATING_SYSTEM ), error_entry( CUDA_ERROR_INVALID_HANDLE ), error_entry( CUDA_ERROR_NOT_FOUND ), error_entry( CUDA_ERROR_NOT_READY ), error_entry( CUDA_ERROR_LAUNCH_FAILED ), error_entry( CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES ), error_entry( CUDA_ERROR_LAUNCH_TIMEOUT ), error_entry( CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING ), error_entry( CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED ), error_entry( CUDA_ERROR_PEER_ACCESS_NOT_ENABLED ), error_entry( CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE ), error_entry( CUDA_ERROR_CONTEXT_IS_DESTROYED ), error_entry( CUDA_ERROR_ASSERT ), error_entry( CUDA_ERROR_TOO_MANY_PEERS ), error_entry( CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED ), error_entry( CUDA_ERROR_HOST_MEMORY_NOT_REGISTERED ), error_entry( CUDA_ERROR_UNKNOWN ) }; const size_t cu_errors_num = sizeof(cu_errors) / sizeof(cu_errors[0]); cv::String getErrorString(int code, const ErrorEntry* errors, size_t n) { size_t idx = std::find_if(errors, errors + n, ErrorEntryComparer(code)) - errors; const char* msg = (idx != n) ? errors[idx].str : "Unknown error code"; cv::String str = cv::format("%s [Code = %d]", msg, code); return str; } } #endif String cv::cuda::getNppErrorMessage(int code) { #ifndef HAVE_CUDA (void) code; return String(); #else return getErrorString(code, npp_errors, npp_error_num); #endif } String cv::cuda::getCudaDriverApiErrorMessage(int code) { #ifndef HAVE_CUDA (void) code; return String(); #else return getErrorString(code, cu_errors, cu_errors_num); #endif }