/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // // Authors: // * Ozan Tonkal, ozantonkal@gmail.com // * Anatoly Baksheev, Itseez Inc. myname.mysurname <> mycompany.com // //M*/ #include "precomp.hpp" namespace cv { namespace viz { template Vec<_Tp, 3>* vtkpoints_data(vtkSmartPointer& points); } } /////////////////////////////////////////////////////////////////////////////////////////////// /// line widget implementation cv::viz::WLine::WLine(const Point3f &pt1, const Point3f &pt2, const Color &color) { vtkSmartPointer line = vtkSmartPointer::New(); line->SetPoint1(pt1.x, pt1.y, pt1.z); line->SetPoint2(pt2.x, pt2.y, pt2.z); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInputConnection(line->GetOutputPort()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } template<> cv::viz::WLine cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// plane widget implementation namespace cv { namespace viz { namespace { struct PlaneUtils { template static vtkSmartPointer setSize(const Vec<_Tp, 3> ¢er, vtkSmartPointer poly_data_port, double size) { vtkSmartPointer transform = vtkSmartPointer::New(); transform->PreMultiply(); transform->Translate(center[0], center[1], center[2]); transform->Scale(size, size, size); transform->Translate(-center[0], -center[1], -center[2]); vtkSmartPointer transform_filter = vtkSmartPointer::New(); transform_filter->SetInputConnection(poly_data_port); transform_filter->SetTransform(transform); transform_filter->Update(); return transform_filter; } }; }}} cv::viz::WPlane::WPlane(const Vec4f& coefs, float size, const Color &color) { vtkSmartPointer plane = vtkSmartPointer::New(); plane->SetNormal(coefs[0], coefs[1], coefs[2]); double norm = cv::norm(Vec3f(coefs.val)); plane->Push(-coefs[3] / norm); Vec3d p_center; plane->GetOrigin(p_center.val); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInputConnection(PlaneUtils::setSize(p_center, plane->GetOutputPort(), size)->GetOutputPort()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } cv::viz::WPlane::WPlane(const Vec4f& coefs, const Point3f& pt, float size, const Color &color) { vtkSmartPointer plane = vtkSmartPointer::New(); Point3f coefs3(coefs[0], coefs[1], coefs[2]); double norm_sqr = 1.0 / coefs3.dot(coefs3); plane->SetNormal(coefs[0], coefs[1], coefs[2]); double t = coefs3.dot(pt) + coefs[3]; Vec3f p_center = pt - coefs3 * t * norm_sqr; plane->SetCenter(p_center[0], p_center[1], p_center[2]); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInputConnection(PlaneUtils::setSize(p_center, plane->GetOutputPort(), size)->GetOutputPort()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } template<> cv::viz::WPlane cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// sphere widget implementation cv::viz::WSphere::WSphere(const Point3f ¢er, float radius, int sphere_resolution, const Color &color) { vtkSmartPointer sphere = vtkSmartPointer::New(); sphere->SetRadius(radius); sphere->SetCenter(center.x, center.y, center.z); sphere->SetPhiResolution(sphere_resolution); sphere->SetThetaResolution(sphere_resolution); sphere->LatLongTessellationOff(); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInputConnection(sphere->GetOutputPort()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } template<> cv::viz::WSphere cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// arrow widget implementation cv::viz::WArrow::WArrow(const Point3f& pt1, const Point3f& pt2, float thickness, const Color &color) { vtkSmartPointer arrowSource = vtkSmartPointer::New(); arrowSource->SetShaftRadius(thickness); // The thickness and radius of the tip are adjusted based on the thickness of the arrow arrowSource->SetTipRadius(thickness * 3.0); arrowSource->SetTipLength(thickness * 10.0); RNG rng = theRNG(); Vec3d arbitrary(rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0)); Vec3d startPoint(pt1.x, pt1.y, pt1.z), endPoint(pt2.x, pt2.y, pt2.z); double length = cv::norm(endPoint - startPoint); Vec3d xvec = normalized(endPoint - startPoint); Vec3d zvec = normalized(xvec.cross(arbitrary)); Vec3d yvec = zvec.cross(xvec); Affine3d pose = makeTransformToGlobal(xvec, yvec, zvec); // Apply the transforms vtkSmartPointer transform = vtkSmartPointer::New(); transform->Translate(startPoint.val); transform->Concatenate(vtkmatrix(pose.matrix)); transform->Scale(length, length, length); // Transform the polydata vtkSmartPointer transformPD = vtkSmartPointer::New(); transformPD->SetTransform(transform); transformPD->SetInputConnection(arrowSource->GetOutputPort()); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInputConnection(transformPD->GetOutputPort()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } template<> cv::viz::WArrow cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// circle widget implementation cv::viz::WCircle::WCircle(const Point3f& pt, float radius, float thickness, const Color& color) { vtkSmartPointer disk = vtkSmartPointer::New(); // Maybe the resolution should be lower e.g. 50 or 25 disk->SetCircumferentialResolution(50); disk->SetInnerRadius(radius - thickness); disk->SetOuterRadius(radius + thickness); // Set the circle origin vtkSmartPointer t = vtkSmartPointer::New(); t->Identity(); t->Translate(pt.x, pt.y, pt.z); vtkSmartPointer tf = vtkSmartPointer::New(); tf->SetTransform(t); tf->SetInputConnection(disk->GetOutputPort()); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInputConnection(tf->GetOutputPort()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } template<> cv::viz::WCircle cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// cylinder widget implementation cv::viz::WCylinder::WCylinder(const Point3f& pt_on_axis, const Point3f& axis_direction, float radius, int numsides, const Color &color) { const Point3f pt2 = pt_on_axis + axis_direction; vtkSmartPointer line = vtkSmartPointer::New(); line->SetPoint1(pt_on_axis.x, pt_on_axis.y, pt_on_axis.z); line->SetPoint2(pt2.x, pt2.y, pt2.z); vtkSmartPointer tuber = vtkSmartPointer::New(); tuber->SetInputConnection(line->GetOutputPort()); tuber->SetRadius(radius); tuber->SetNumberOfSides(numsides); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInputConnection(tuber->GetOutputPort()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } template<> cv::viz::WCylinder cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// cylinder widget implementation cv::viz::WCube::WCube(const Point3f& pt_min, const Point3f& pt_max, bool wire_frame, const Color &color) { vtkSmartPointer mapper = vtkSmartPointer::New(); if (wire_frame) { vtkSmartPointer cube = vtkSmartPointer::New(); cube->SetBounds(pt_min.x, pt_max.x, pt_min.y, pt_max.y, pt_min.z, pt_max.z); mapper->SetInputConnection(cube->GetOutputPort()); } else { vtkSmartPointer cube = vtkSmartPointer::New(); cube->SetBounds(pt_min.x, pt_max.x, pt_min.y, pt_max.y, pt_min.z, pt_max.z); mapper->SetInputConnection(cube->GetOutputPort()); } vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } template<> cv::viz::WCube cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// coordinate system widget implementation cv::viz::WCoordinateSystem::WCoordinateSystem(float scale) { vtkSmartPointer axes = vtkSmartPointer::New(); axes->SetOrigin(0, 0, 0); axes->SetScaleFactor(scale); vtkSmartPointer axes_colors = vtkSmartPointer::New(); axes_colors->Allocate(6); axes_colors->InsertNextValue(0.0); axes_colors->InsertNextValue(0.0); axes_colors->InsertNextValue(0.5); axes_colors->InsertNextValue(0.5); axes_colors->InsertNextValue(1.0); axes_colors->InsertNextValue(1.0); vtkSmartPointer axes_data = axes->GetOutput(); #if VTK_MAJOR_VERSION <= 5 axes_data->Update(); #else axes->Update(); #endif axes_data->GetPointData()->SetScalars(axes_colors); vtkSmartPointer axes_tubes = vtkSmartPointer::New(); #if VTK_MAJOR_VERSION <= 5 axes_tubes->SetInput(axes_data); #else axes_tubes->SetInputData(axes_data); #endif axes_tubes->SetRadius(axes->GetScaleFactor() / 50.0); axes_tubes->SetNumberOfSides(6); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetScalarModeToUsePointData(); mapper->SetInputConnection(axes_tubes->GetOutputPort()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } template<> cv::viz::WCoordinateSystem cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// polyline widget implementation namespace cv { namespace viz { namespace { struct PolyLineUtils { template static void copy(const Mat& source, Vec<_Tp, 3> *output, vtkSmartPointer polyLine) { int s_chs = source.channels(); for (int y = 0, id = 0; y < source.rows; ++y) { const _Tp* srow = source.ptr<_Tp>(y); for (int x = 0; x < source.cols; ++x, srow += s_chs, ++id) { *output++ = Vec<_Tp, 3>(srow); polyLine->GetPointIds()->SetId(id,id); } } } }; }}} cv::viz::WPolyLine::WPolyLine(InputArray _pointData, const Color &color) { Mat pointData = _pointData.getMat(); CV_Assert(pointData.type() == CV_32FC3 || pointData.type() == CV_32FC4 || pointData.type() == CV_64FC3 || pointData.type() == CV_64FC4); vtkIdType nr_points = pointData.total(); vtkSmartPointer points = vtkSmartPointer::New(); vtkSmartPointer polyData = vtkSmartPointer::New(); vtkSmartPointer polyLine = vtkSmartPointer::New(); if (pointData.depth() == CV_32F) points->SetDataTypeToFloat(); else points->SetDataTypeToDouble(); points->SetNumberOfPoints(nr_points); polyLine->GetPointIds()->SetNumberOfIds(nr_points); if (pointData.depth() == CV_32F) { // Get a pointer to the beginning of the data array Vec3f *data_beg = vtkpoints_data(points); PolyLineUtils::copy(pointData, data_beg, polyLine); } else if (pointData.depth() == CV_64F) { // Get a pointer to the beginning of the data array Vec3d *data_beg = vtkpoints_data(points); PolyLineUtils::copy(pointData, data_beg, polyLine); } vtkSmartPointer cells = vtkSmartPointer::New(); cells->InsertNextCell(polyLine); polyData->SetPoints(points); polyData->SetLines(cells); vtkSmartPointer mapper = vtkSmartPointer::New(); #if VTK_MAJOR_VERSION <= 5 mapper->SetInput(polyData); #else mapper->SetInputData(polyData); #endif vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } template<> cv::viz::WPolyLine cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// grid widget implementation namespace cv { namespace viz { namespace { struct GridUtils { static vtkSmartPointer createGrid(const Vec2i &dimensions, const Vec2f &spacing) { // Create the grid using image data vtkSmartPointer grid = vtkSmartPointer::New(); // Add 1 to dimensions because in ImageData dimensions is the number of lines // - however here it means number of cells grid->SetDimensions(dimensions[0]+1, dimensions[1]+1, 1); grid->SetSpacing(spacing[0], spacing[1], 0.); // Set origin of the grid to be the middle of the grid grid->SetOrigin(dimensions[0] * spacing[0] * (-0.5), dimensions[1] * spacing[1] * (-0.5), 0); // Extract the edges so we have the grid vtkSmartPointer filter = vtkSmartPointer::New(); #if VTK_MAJOR_VERSION <= 5 filter->SetInputConnection(grid->GetProducerPort()); #else filter->SetInputData(grid); #endif filter->Update(); return filter->GetOutput(); } }; }}} cv::viz::WGrid::WGrid(const Vec2i &dimensions, const Vec2f &spacing, const Color &color) { vtkSmartPointer grid = GridUtils::createGrid(dimensions, spacing); vtkSmartPointer mapper = vtkSmartPointer::New(); #if VTK_MAJOR_VERSION <= 5 mapper->SetInputConnection(grid->GetProducerPort()); #else mapper->SetInputData(grid); #endif vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } cv::viz::WGrid::WGrid(const Vec4f &coefs, const Vec2i &dimensions, const Vec2f &spacing, const Color &color) { vtkSmartPointer grid = GridUtils::createGrid(dimensions, spacing); // Estimate the transform to set the normal based on the coefficients Vec3d normal(coefs[0], coefs[1], coefs[2]); Vec3d up_vector(0.0, 1.0, 0.0); // Just set as default double push_distance = -coefs[3]/cv::norm(Vec3f(coefs.val)); Vec3d n = normalize(normal); Vec3d u = normalize(up_vector.cross(n)); Vec3d v = n.cross(u); Affine3d pose = makeTransformToGlobal(u, v, n, n * push_distance); vtkSmartPointer transform = vtkSmartPointer::New(); transform->PreMultiply(); transform->SetMatrix(vtkmatrix(pose.matrix)); vtkSmartPointer transform_filter = vtkSmartPointer::New(); transform_filter->SetTransform(transform); #if VTK_MAJOR_VERSION <= 5 transform_filter->SetInputConnection(grid->GetProducerPort()); #else transform_filter->SetInputData(grid); #endif transform_filter->Update(); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInputConnection(transform_filter->GetOutputPort()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } template<> cv::viz::WGrid cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// text3D widget implementation cv::viz::WText3D::WText3D(const String &text, const Point3f &position, float text_scale, bool face_camera, const Color &color) { vtkSmartPointer textSource = vtkSmartPointer::New(); textSource->SetText(text.c_str()); textSource->Update(); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInputConnection(textSource->GetOutputPort()); if (face_camera) { vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); actor->SetPosition(position.x, position.y, position.z); actor->SetScale(text_scale); WidgetAccessor::setProp(*this, actor); } else { vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); actor->SetPosition(position.x, position.y, position.z); actor->SetScale(text_scale); WidgetAccessor::setProp(*this, actor); } setColor(color); } void cv::viz::WText3D::setText(const String &text) { vtkFollower *actor = vtkFollower::SafeDownCast(WidgetAccessor::getProp(*this)); CV_Assert("This widget does not support text." && actor); // Update text source vtkPolyDataMapper *mapper = vtkPolyDataMapper::SafeDownCast(actor->GetMapper()); vtkVectorText * textSource = vtkVectorText::SafeDownCast(mapper->GetInputConnection(0,0)->GetProducer()); CV_Assert("This widget does not support text." && textSource); textSource->SetText(text.c_str()); textSource->Update(); } cv::String cv::viz::WText3D::getText() const { vtkFollower *actor = vtkFollower::SafeDownCast(WidgetAccessor::getProp(*this)); CV_Assert("This widget does not support text." && actor); vtkPolyDataMapper *mapper = vtkPolyDataMapper::SafeDownCast(actor->GetMapper()); vtkVectorText * textSource = vtkVectorText::SafeDownCast(mapper->GetInputConnection(0,0)->GetProducer()); CV_Assert("This widget does not support text." && textSource); return textSource->GetText(); } template<> cv::viz::WText3D cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// text widget implementation cv::viz::WText::WText(const String &text, const Point2i &pos, int font_size, const Color &color) { vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetPosition(pos.x, pos.y); actor->SetInput(text.c_str()); vtkSmartPointer tprop = actor->GetTextProperty(); tprop->SetFontSize(font_size); tprop->SetFontFamilyToArial(); tprop->SetJustificationToLeft(); tprop->BoldOn(); Color c = vtkcolor(color); tprop->SetColor(c.val); WidgetAccessor::setProp(*this, actor); } template<> cv::viz::WText cv::viz::Widget::cast() { Widget2D widget = this->cast(); return static_cast(widget); } void cv::viz::WText::setText(const String &text) { vtkTextActor *actor = vtkTextActor::SafeDownCast(WidgetAccessor::getProp(*this)); CV_Assert("This widget does not support text." && actor); actor->SetInput(text.c_str()); } cv::String cv::viz::WText::getText() const { vtkTextActor *actor = vtkTextActor::SafeDownCast(WidgetAccessor::getProp(*this)); CV_Assert("This widget does not support text." && actor); return actor->GetInput(); } /////////////////////////////////////////////////////////////////////////////////////////////// /// image overlay widget implementation cv::viz::WImageOverlay::WImageOverlay(const Mat &image, const Rect &rect) { CV_Assert(!image.empty() && image.depth() == CV_8U); // Create the vtk image and set its parameters based on input image vtkSmartPointer vtk_image = vtkSmartPointer::New(); ConvertToVtkImage::convert(image, vtk_image); // Need to flip the image as the coordinates are different in OpenCV and VTK vtkSmartPointer flipFilter = vtkSmartPointer::New(); flipFilter->SetFilteredAxis(1); // Vertical flip #if VTK_MAJOR_VERSION <= 5 flipFilter->SetInputConnection(vtk_image->GetProducerPort()); #else flipFilter->SetInputData(vtk_image); #endif flipFilter->Update(); // Scale the image based on the Rect vtkSmartPointer transform = vtkSmartPointer::New(); transform->Scale(double(image.cols)/rect.width,double(image.rows)/rect.height,1.0); vtkSmartPointer image_reslice = vtkSmartPointer::New(); image_reslice->SetResliceTransform(transform); image_reslice->SetInputConnection(flipFilter->GetOutputPort()); image_reslice->SetOutputDimensionality(2); image_reslice->InterpolateOn(); image_reslice->AutoCropOutputOn(); vtkSmartPointer imageMapper = vtkSmartPointer::New(); imageMapper->SetInputConnection(image_reslice->GetOutputPort()); imageMapper->SetColorWindow(255); // OpenCV color imageMapper->SetColorLevel(127.5); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(imageMapper); actor->SetPosition(rect.x, rect.y); WidgetAccessor::setProp(*this, actor); } void cv::viz::WImageOverlay::setImage(const Mat &image) { CV_Assert(!image.empty() && image.depth() == CV_8U); vtkActor2D *actor = vtkActor2D::SafeDownCast(WidgetAccessor::getProp(*this)); CV_Assert("This widget does not support overlay image." && actor); vtkImageMapper *mapper = vtkImageMapper::SafeDownCast(actor->GetMapper()); CV_Assert("This widget does not support overlay image." && mapper); // Create the vtk image and set its parameters based on input image vtkSmartPointer vtk_image = vtkSmartPointer::New(); ConvertToVtkImage::convert(image, vtk_image); // Need to flip the image as the coordinates are different in OpenCV and VTK vtkSmartPointer flipFilter = vtkSmartPointer::New(); flipFilter->SetFilteredAxis(1); // Vertical flip #if VTK_MAJOR_VERSION <= 5 flipFilter->SetInputConnection(vtk_image->GetProducerPort()); #else flipFilter->SetInputData(vtk_image); #endif flipFilter->Update(); mapper->SetInputConnection(flipFilter->GetOutputPort()); } template<> cv::viz::WImageOverlay cv::viz::Widget::cast() { Widget2D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// image 3D widget implementation cv::viz::WImage3D::WImage3D(const Mat &image, const Size &size) { CV_Assert(!image.empty() && image.depth() == CV_8U); // Create the vtk image and set its parameters based on input image vtkSmartPointer vtk_image = vtkSmartPointer::New(); ConvertToVtkImage::convert(image, vtk_image); // Need to flip the image as the coordinates are different in OpenCV and VTK vtkSmartPointer flipFilter = vtkSmartPointer::New(); flipFilter->SetFilteredAxis(1); // Vertical flip #if VTK_MAJOR_VERSION <= 5 flipFilter->SetInputConnection(vtk_image->GetProducerPort()); #else flipFilter->SetInputData(vtk_image); #endif flipFilter->Update(); Vec3d plane_center(size.width * 0.5, size.height * 0.5, 0.0); vtkSmartPointer plane = vtkSmartPointer::New(); plane->SetCenter(plane_center[0], plane_center[1], plane_center[2]); plane->SetNormal(0.0, 0.0, 1.0); vtkSmartPointer transform = vtkSmartPointer::New(); transform->PreMultiply(); transform->Translate(plane_center[0], plane_center[1], plane_center[2]); transform->Scale(size.width, size.height, 1.0); transform->Translate(-plane_center[0], -plane_center[1], -plane_center[2]); vtkSmartPointer transform_filter = vtkSmartPointer::New(); transform_filter->SetTransform(transform); transform_filter->SetInputConnection(plane->GetOutputPort()); transform_filter->Update(); // Apply the texture vtkSmartPointer texture = vtkSmartPointer::New(); texture->SetInputConnection(flipFilter->GetOutputPort()); vtkSmartPointer texturePlane = vtkSmartPointer::New(); texturePlane->SetInputConnection(transform_filter->GetOutputPort()); vtkSmartPointer planeMapper = vtkSmartPointer::New(); planeMapper->SetInputConnection(texturePlane->GetOutputPort()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(planeMapper); actor->SetTexture(texture); WidgetAccessor::setProp(*this, actor); } cv::viz::WImage3D::WImage3D(const Vec3f &position, const Vec3f &normal, const Vec3f &up_vector, const Mat &image, const Size &size) { CV_Assert(!image.empty() && image.depth() == CV_8U); // Create the vtk image and set its parameters based on input image vtkSmartPointer vtk_image = vtkSmartPointer::New(); ConvertToVtkImage::convert(image, vtk_image); // Need to flip the image as the coordinates are different in OpenCV and VTK vtkSmartPointer flipFilter = vtkSmartPointer::New(); flipFilter->SetFilteredAxis(1); // Vertical flip #if VTK_MAJOR_VERSION <= 5 flipFilter->SetInputConnection(vtk_image->GetProducerPort()); #else flipFilter->SetInputData(vtk_image); #endif flipFilter->Update(); vtkSmartPointer plane = vtkSmartPointer::New(); plane->SetCenter(0.0, 0.0, 0.0); plane->SetNormal(0.0, 0.0, 1.0); // Compute the transformation matrix for drawing the camera frame in a scene Vec3d n = normalize(normal); Vec3d u = normalize(up_vector.cross(n)); Vec3d v = n.cross(u); Affine3d pose = makeTransformToGlobal(u, v, n, position); // Apply the texture vtkSmartPointer texture = vtkSmartPointer::New(); texture->SetInputConnection(flipFilter->GetOutputPort()); vtkSmartPointer texturePlane = vtkSmartPointer::New(); texturePlane->SetInputConnection(plane->GetOutputPort()); // Apply the transform after texture mapping vtkSmartPointer transform = vtkSmartPointer::New(); transform->PreMultiply(); transform->SetMatrix(vtkmatrix(pose)); transform->Scale(size.width, size.height, 1.0); vtkSmartPointer transform_filter = vtkSmartPointer::New(); transform_filter->SetTransform(transform); transform_filter->SetInputConnection(texturePlane->GetOutputPort()); transform_filter->Update(); vtkSmartPointer planeMapper = vtkSmartPointer::New(); planeMapper->SetInputConnection(transform_filter->GetOutputPort()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(planeMapper); actor->SetTexture(texture); WidgetAccessor::setProp(*this, actor); } void cv::viz::WImage3D::setImage(const Mat &image) { CV_Assert(!image.empty() && image.depth() == CV_8U); vtkActor *actor = vtkActor::SafeDownCast(WidgetAccessor::getProp(*this)); CV_Assert("This widget does not support 3D image." && actor); // Create the vtk image and set its parameters based on input image vtkSmartPointer vtk_image = vtkSmartPointer::New(); ConvertToVtkImage::convert(image, vtk_image); // Need to flip the image as the coordinates are different in OpenCV and VTK vtkSmartPointer flipFilter = vtkSmartPointer::New(); flipFilter->SetFilteredAxis(1); // Vertical flip #if VTK_MAJOR_VERSION <= 5 flipFilter->SetInputConnection(vtk_image->GetProducerPort()); #else flipFilter->SetInputData(vtk_image); #endif flipFilter->Update(); // Apply the texture vtkSmartPointer texture = vtkSmartPointer::New(); texture->SetInputConnection(flipFilter->GetOutputPort()); actor->SetTexture(texture); } template<> cv::viz::WImage3D cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// camera position widget implementation namespace cv { namespace viz { namespace { struct CameraPositionUtils { static void projectImage(float fovy, float far_end_height, const Mat &image, double scale, const Color &color, vtkSmartPointer actor) { // Create a camera vtkSmartPointer camera = vtkSmartPointer::New(); float aspect_ratio = float(image.cols)/float(image.rows); // Create the vtk image vtkSmartPointer vtk_image = vtkSmartPointer::New(); ConvertToVtkImage::convert(image, vtk_image); // Adjust a pixel of the vtk_image vtk_image->SetScalarComponentFromDouble(0, image.rows-1, 0, 0, color[2]); vtk_image->SetScalarComponentFromDouble(0, image.rows-1, 0, 1, color[1]); vtk_image->SetScalarComponentFromDouble(0, image.rows-1, 0, 2, color[0]); // Need to flip the image as the coordinates are different in OpenCV and VTK vtkSmartPointer flipFilter = vtkSmartPointer::New(); flipFilter->SetFilteredAxis(1); // Vertical flip #if VTK_MAJOR_VERSION <= 5 flipFilter->SetInputConnection(vtk_image->GetProducerPort()); #else flipFilter->SetInputData(vtk_image); #endif flipFilter->Update(); Vec3d plane_center(0.0, 0.0, scale); vtkSmartPointer plane = vtkSmartPointer::New(); plane->SetCenter(plane_center[0], plane_center[1], plane_center[2]); plane->SetNormal(0.0, 0.0, 1.0); vtkSmartPointer transform = vtkSmartPointer::New(); transform->PreMultiply(); transform->Translate(plane_center[0], plane_center[1], plane_center[2]); transform->Scale(far_end_height*aspect_ratio, far_end_height, 1.0); transform->RotateY(180.0); transform->Translate(-plane_center[0], -plane_center[1], -plane_center[2]); // Apply the texture vtkSmartPointer texture = vtkSmartPointer::New(); texture->SetInputConnection(flipFilter->GetOutputPort()); vtkSmartPointer texturePlane = vtkSmartPointer::New(); texturePlane->SetInputConnection(plane->GetOutputPort()); vtkSmartPointer transform_filter = vtkSmartPointer::New(); transform_filter->SetTransform(transform); transform_filter->SetInputConnection(texturePlane->GetOutputPort()); transform_filter->Update(); // Create frustum camera->SetViewAngle(fovy); camera->SetPosition(0.0,0.0,0.0); camera->SetViewUp(0.0,1.0,0.0); camera->SetFocalPoint(0.0,0.0,1.0); camera->SetClippingRange(0.01, scale); double planesArray[24]; camera->GetFrustumPlanes(aspect_ratio, planesArray); vtkSmartPointer planes = vtkSmartPointer::New(); planes->SetFrustumPlanes(planesArray); vtkSmartPointer frustumSource = vtkSmartPointer::New(); frustumSource->SetPlanes(planes); frustumSource->Update(); vtkSmartPointer filter = vtkSmartPointer::New(); filter->SetInputConnection(frustumSource->GetOutputPort()); filter->Update(); // Frustum needs to be textured or else it can't be combined with image vtkSmartPointer frustum_texture = vtkSmartPointer::New(); frustum_texture->SetInputConnection(filter->GetOutputPort()); // Texture mapping with only one pixel from the image to have constant color frustum_texture->SetSRange(0.0, 0.0); frustum_texture->SetTRange(0.0, 0.0); vtkSmartPointer appendFilter = vtkSmartPointer::New(); appendFilter->AddInputConnection(frustum_texture->GetOutputPort()); appendFilter->AddInputConnection(transform_filter->GetOutputPort()); vtkSmartPointer planeMapper = vtkSmartPointer::New(); planeMapper->SetInputConnection(appendFilter->GetOutputPort()); actor->SetMapper(planeMapper); actor->SetTexture(texture); } }; }}} cv::viz::WCameraPosition::WCameraPosition(float scale) { vtkSmartPointer axes = vtkSmartPointer::New(); axes->SetOrigin(0, 0, 0); axes->SetScaleFactor(scale); vtkSmartPointer axes_colors = vtkSmartPointer::New(); axes_colors->Allocate(6); axes_colors->InsertNextValue(0.0); axes_colors->InsertNextValue(0.0); axes_colors->InsertNextValue(0.5); axes_colors->InsertNextValue(0.5); axes_colors->InsertNextValue(1.0); axes_colors->InsertNextValue(1.0); vtkSmartPointer axes_data = axes->GetOutput(); #if VTK_MAJOR_VERSION <= 5 axes_data->Update(); #else axes->Update(); #endif axes_data->GetPointData()->SetScalars(axes_colors); vtkSmartPointer axes_tubes = vtkSmartPointer::New(); #if VTK_MAJOR_VERSION <= 5 axes_tubes->SetInput(axes_data); #else axes_tubes->SetInputData(axes_data); #endif axes_tubes->SetRadius(axes->GetScaleFactor() / 50.0); axes_tubes->SetNumberOfSides(6); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetScalarModeToUsePointData(); mapper->SetInputConnection(axes_tubes->GetOutputPort()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } cv::viz::WCameraPosition::WCameraPosition(const Matx33f &K, float scale, const Color &color) { vtkSmartPointer camera = vtkSmartPointer::New(); float f_x = K(0,0); float f_y = K(1,1); float c_y = K(1,2); float aspect_ratio = f_y / f_x; // Assuming that this is an ideal camera (c_y and c_x are at the center of the image) float fovy = 2.0f * atan2(c_y,f_y) * 180 / CV_PI; camera->SetViewAngle(fovy); camera->SetPosition(0.0,0.0,0.0); camera->SetViewUp(0.0,1.0,0.0); camera->SetFocalPoint(0.0,0.0,1.0); camera->SetClippingRange(0.01, scale); double planesArray[24]; camera->GetFrustumPlanes(aspect_ratio, planesArray); vtkSmartPointer planes = vtkSmartPointer::New(); planes->SetFrustumPlanes(planesArray); vtkSmartPointer frustumSource = vtkSmartPointer::New(); frustumSource->SetPlanes(planes); frustumSource->Update(); vtkSmartPointer filter = vtkSmartPointer::New(); filter->SetInputConnection(frustumSource->GetOutputPort()); filter->Update(); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInputConnection(filter->GetOutputPort()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } cv::viz::WCameraPosition::WCameraPosition(const Vec2f &fov, float scale, const Color &color) { vtkSmartPointer camera = vtkSmartPointer::New(); camera->SetViewAngle(fov[1] * 180 / CV_PI); // Vertical field of view camera->SetPosition(0.0,0.0,0.0); camera->SetViewUp(0.0,1.0,0.0); camera->SetFocalPoint(0.0,0.0,1.0); camera->SetClippingRange(0.01, scale); double aspect_ratio = tan(fov[0] * 0.5) / tan(fov[1] * 0.5); double planesArray[24]; camera->GetFrustumPlanes(aspect_ratio, planesArray); vtkSmartPointer planes = vtkSmartPointer::New(); planes->SetFrustumPlanes(planesArray); vtkSmartPointer frustumSource = vtkSmartPointer::New(); frustumSource->SetPlanes(planes); frustumSource->Update(); // Extract the edges so we have the grid vtkSmartPointer filter = vtkSmartPointer::New(); filter->SetInputConnection(frustumSource->GetOutputPort()); filter->Update(); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInputConnection(filter->GetOutputPort()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } cv::viz::WCameraPosition::WCameraPosition(const Matx33f &K, const Mat &image, float scale, const Color &color) { CV_Assert(!image.empty() && image.depth() == CV_8U); float f_y = K(1,1); float c_y = K(1,2); // Assuming that this is an ideal camera (c_y and c_x are at the center of the image) float fovy = 2.0f * atan2(c_y,f_y) * 180.0f / CV_PI; float far_end_height = 2.0f * c_y * scale / f_y; vtkSmartPointer actor = vtkSmartPointer::New(); CameraPositionUtils::projectImage(fovy, far_end_height, image, scale, color, actor); WidgetAccessor::setProp(*this, actor); } cv::viz::WCameraPosition::WCameraPosition(const Vec2f &fov, const Mat &image, float scale, const Color &color) { CV_Assert(!image.empty() && image.depth() == CV_8U); float fovy = fov[1] * 180.0f / CV_PI; float far_end_height = 2.0 * scale * tan(fov[1] * 0.5); vtkSmartPointer actor = vtkSmartPointer::New(); CameraPositionUtils::projectImage(fovy, far_end_height, image, scale, color, actor); WidgetAccessor::setProp(*this, actor); } template<> cv::viz::WCameraPosition cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// trajectory widget implementation namespace cv { namespace viz { namespace { struct TrajectoryUtils { static void applyPath(vtkSmartPointer poly_data, vtkSmartPointer append_filter, const std::vector &path) { vtkIdType nr_points = path.size(); for (vtkIdType i = 0; i < nr_points; ++i) { vtkSmartPointer new_data = vtkSmartPointer::New(); new_data->DeepCopy(poly_data); // Transform the default coordinate frame vtkSmartPointer transform = vtkSmartPointer::New(); transform->PreMultiply(); vtkSmartPointer mat_trans = vtkSmartPointer::New(); mat_trans = vtkmatrix(path[i].matrix); transform->SetMatrix(mat_trans); vtkSmartPointer filter = vtkSmartPointer::New(); #if VTK_MAJOR_VERSION <= 5 filter->SetInput(new_data); #else filter->SetInputData(new_data); #endif filter->SetTransform(transform); filter->Update(); append_filter->AddInputConnection(filter->GetOutputPort()); } } }; }}} cv::viz::WTrajectory::WTrajectory(InputArray _path, int display_mode, float scale, const Color &color) { CV_Assert(_path.kind() == _InputArray::STD_VECTOR || _path.kind() == _InputArray::MAT); CV_Assert(_path.type() == CV_32FC(16) || _path.type() == CV_64FC(16)); const Affine3d* dpath = _path.getMat().ptr(), *dend = dpath + _path.total(); const Affine3f* fpath = _path.getMat().ptr(), *fend = fpath + _path.total(); std::vector path; if (_path.depth() == CV_32F) path.assign(fpath, fend); if (_path.depth() == CV_64F) path.assign(dpath, dend); vtkSmartPointer appendFilter = vtkSmartPointer::New(); // Bitwise and with 3 in order to limit the domain to 2 bits if ((~display_mode & 3) ^ WTrajectory::PATH) { // Create a poly line along the path vtkIdType nr_points = path.size(); vtkSmartPointer points = vtkSmartPointer::New(); points->SetDataTypeToFloat(); points->SetNumberOfPoints(nr_points); vtkSmartPointer polyData = vtkSmartPointer::New(); vtkSmartPointer polyLine = vtkSmartPointer::New(); polyLine->GetPointIds()->SetNumberOfIds(nr_points); Vec3f *data_beg = vtkpoints_data(points); for (vtkIdType i = 0; i < nr_points; ++i) { Vec3f cam_pose = path[i].translation(); *data_beg++ = cam_pose; polyLine->GetPointIds()->SetId(i,i); } vtkSmartPointer cells = vtkSmartPointer::New(); cells->InsertNextCell(polyLine); polyData->SetPoints(points); polyData->SetLines(cells); // Set the color for polyData vtkSmartPointer colors = vtkSmartPointer::New(); colors->SetNumberOfComponents(3); colors->SetNumberOfTuples(nr_points); colors->FillComponent(0, color[2]); colors->FillComponent(1, color[1]); colors->FillComponent(2, color[0]); polyData->GetPointData()->SetScalars(colors); #if VTK_MAJOR_VERSION <= 5 appendFilter->AddInputConnection(polyData->GetProducerPort()); #else appendFilter->AddInputData(polyData); #endif } if ((~display_mode & 3) ^ WTrajectory::FRAMES) { // Create frames and transform along the path vtkSmartPointer axes = vtkSmartPointer::New(); axes->SetOrigin(0, 0, 0); axes->SetScaleFactor(scale); vtkSmartPointer axes_colors = vtkSmartPointer::New(); axes_colors->SetNumberOfComponents(3); axes_colors->InsertNextTuple3(255,0,0); axes_colors->InsertNextTuple3(255,0,0); axes_colors->InsertNextTuple3(0,255,0); axes_colors->InsertNextTuple3(0,255,0); axes_colors->InsertNextTuple3(0,0,255); axes_colors->InsertNextTuple3(0,0,255); vtkSmartPointer axes_data = axes->GetOutput(); #if VTK_MAJOR_VERSION <= 5 axes_data->Update(); #else axes->Update(); #endif axes_data->GetPointData()->SetScalars(axes_colors); vtkSmartPointer axes_tubes = vtkSmartPointer::New(); #if VTK_MAJOR_VERSION <= 5 axes_tubes->SetInput(axes_data); #else axes_tubes->SetInputData(axes_data); #endif axes_tubes->SetRadius(axes->GetScaleFactor() / 50.0); axes_tubes->SetNumberOfSides(6); axes_tubes->Update(); TrajectoryUtils::applyPath(axes_tubes->GetOutput(), appendFilter, path); } vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetScalarModeToUsePointData(); mapper->SetInputConnection(appendFilter->GetOutputPort()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } template<> cv::viz::WTrajectory cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// WTrajectoryFrustums widget implementation cv::viz::WTrajectoryFrustums::WTrajectoryFrustums(const std::vector &path, const Matx33f &K, float scale, const Color &color) { vtkSmartPointer camera = vtkSmartPointer::New(); float f_x = K(0,0); float f_y = K(1,1); float c_y = K(1,2); float aspect_ratio = f_y / f_x; // Assuming that this is an ideal camera (c_y and c_x are at the center of the image) float fovy = 2.0f * atan2(c_y,f_y) * 180 / CV_PI; camera->SetViewAngle(fovy); camera->SetPosition(0.0,0.0,0.0); camera->SetViewUp(0.0,1.0,0.0); camera->SetFocalPoint(0.0,0.0,1.0); camera->SetClippingRange(0.01, scale); double planesArray[24]; camera->GetFrustumPlanes(aspect_ratio, planesArray); vtkSmartPointer planes = vtkSmartPointer::New(); planes->SetFrustumPlanes(planesArray); vtkSmartPointer frustumSource = vtkSmartPointer::New(); frustumSource->SetPlanes(planes); frustumSource->Update(); // Extract the edges vtkSmartPointer filter = vtkSmartPointer::New(); filter->SetInputConnection(frustumSource->GetOutputPort()); filter->Update(); vtkSmartPointer appendFilter = vtkSmartPointer::New(); TrajectoryUtils::applyPath(filter->GetOutput(), appendFilter, path); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInputConnection(appendFilter->GetOutputPort()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } cv::viz::WTrajectoryFrustums::WTrajectoryFrustums(const std::vector &path, const Vec2f &fov, float scale, const Color &color) { vtkSmartPointer camera = vtkSmartPointer::New(); camera->SetViewAngle(fov[1] * 180 / CV_PI); // Vertical field of view camera->SetPosition(0.0,0.0,0.0); camera->SetViewUp(0.0,1.0,0.0); camera->SetFocalPoint(0.0,0.0,1.0); camera->SetClippingRange(0.01, scale); double aspect_ratio = tan(fov[0] * 0.5) / tan(fov[1] * 0.5); double planesArray[24]; camera->GetFrustumPlanes(aspect_ratio, planesArray); vtkSmartPointer planes = vtkSmartPointer::New(); planes->SetFrustumPlanes(planesArray); vtkSmartPointer frustumSource = vtkSmartPointer::New(); frustumSource->SetPlanes(planes); frustumSource->Update(); // Extract the edges vtkSmartPointer filter = vtkSmartPointer::New(); filter->SetInputConnection(frustumSource->GetOutputPort()); filter->Update(); vtkSmartPointer appendFilter = vtkSmartPointer::New(); TrajectoryUtils::applyPath(filter->GetOutput(), appendFilter, path); vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetInputConnection(appendFilter->GetOutputPort()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } template<> cv::viz::WTrajectoryFrustums cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// WTrajectorySpheres widget implementation cv::viz::WTrajectorySpheres::WTrajectorySpheres(const std::vector &path, float line_length, float init_sphere_radius, float sphere_radius, const Color &line_color, const Color &sphere_color) { vtkSmartPointer appendFilter = vtkSmartPointer::New(); vtkIdType nr_poses = path.size(); // Create color arrays vtkSmartPointer line_scalars = vtkSmartPointer::New(); line_scalars->SetNumberOfComponents(3); line_scalars->InsertNextTuple3(line_color[2], line_color[1], line_color[0]); // Create color array for sphere vtkSphereSource * dummy_sphere = vtkSphereSource::New(); // Create the array for big sphere dummy_sphere->SetRadius(init_sphere_radius); dummy_sphere->Update(); vtkIdType nr_points = dummy_sphere->GetOutput()->GetNumberOfCells(); vtkSmartPointer sphere_scalars_init = vtkSmartPointer::New(); sphere_scalars_init->SetNumberOfComponents(3); sphere_scalars_init->SetNumberOfTuples(nr_points); sphere_scalars_init->FillComponent(0, sphere_color[2]); sphere_scalars_init->FillComponent(1, sphere_color[1]); sphere_scalars_init->FillComponent(2, sphere_color[0]); // Create the array for small sphere dummy_sphere->SetRadius(sphere_radius); dummy_sphere->Update(); nr_points = dummy_sphere->GetOutput()->GetNumberOfCells(); vtkSmartPointer sphere_scalars = vtkSmartPointer::New(); sphere_scalars->SetNumberOfComponents(3); sphere_scalars->SetNumberOfTuples(nr_points); sphere_scalars->FillComponent(0, sphere_color[2]); sphere_scalars->FillComponent(1, sphere_color[1]); sphere_scalars->FillComponent(2, sphere_color[0]); dummy_sphere->Delete(); for (vtkIdType i = 0; i < nr_poses; ++i) { Point3f new_pos = path[i].translation(); vtkSmartPointer sphere_source = vtkSmartPointer::New(); sphere_source->SetCenter(new_pos.x, new_pos.y, new_pos.z); if (i == 0) { sphere_source->SetRadius(init_sphere_radius); sphere_source->Update(); sphere_source->GetOutput()->GetCellData()->SetScalars(sphere_scalars_init); appendFilter->AddInputConnection(sphere_source->GetOutputPort()); continue; } else { sphere_source->SetRadius(sphere_radius); sphere_source->Update(); sphere_source->GetOutput()->GetCellData()->SetScalars(sphere_scalars); appendFilter->AddInputConnection(sphere_source->GetOutputPort()); } Affine3d relativeAffine = path[i].inv() * path[i-1]; Vec3d v = path[i].rotation() * relativeAffine.translation(); v = normalize(v) * line_length; vtkSmartPointer line_source = vtkSmartPointer::New(); line_source->SetPoint1(new_pos.x + v[0], new_pos.y + v[1], new_pos.z + v[2]); line_source->SetPoint2(new_pos.x, new_pos.y, new_pos.z); line_source->Update(); line_source->GetOutput()->GetCellData()->SetScalars(line_scalars); appendFilter->AddInputConnection(line_source->GetOutputPort()); } vtkSmartPointer mapper = vtkSmartPointer::New(); mapper->SetScalarModeToUseCellData(); mapper->SetInputConnection(appendFilter->GetOutputPort()); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); } template<> cv::viz::WTrajectorySpheres cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); }