// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "test_precomp.hpp" namespace opencv_test { enum TestSolver { Homogr, Fundam, Essen, PnP, Affine}; /* * rng -- reference to random generator * pts1 -- 2xN image points * pts2 -- for PnP is 3xN object points, otherwise 2xN image points. * two_calib -- True if two cameras have different calibration. * K1 -- intrinsic matrix of the first camera. For PnP only one camera. * K2 -- only if two_calib is True. * pts_size -- required size of points. * inlier_ratio -- required inlier ratio * noise_std -- standard deviation of Gaussian noise of image points. * gt_inliers -- has size of number of inliers. Contains indices of inliers. */ static int generatePoints (cv::RNG &rng, cv::Mat &pts1, cv::Mat &pts2, cv::Mat &K1, cv::Mat &K2, bool two_calib, int pts_size, TestSolver test_case, double inlier_ratio, double noise_std, std::vector >_inliers) { auto eulerAnglesToRotationMatrix = [] (double pitch, double yaw, double roll) { // Calculate rotation about x axis cv::Matx33d R_x (1, 0, 0, 0, cos(roll), -sin(roll), 0, sin(roll), cos(roll)); // Calculate rotation about y axis cv::Matx33d R_y (cos(pitch), 0, sin(pitch), 0, 1, 0, -sin(pitch), 0, cos(pitch)); // Calculate rotation about z axis cv::Matx33d R_z (cos(yaw), -sin(yaw), 0, sin(yaw), cos(yaw), 0, 0, 0, 1); return cv::Mat(R_z * R_y * R_x); // Combined rotation matrix }; const double pitch_min = -CV_PI / 6, pitch_max = CV_PI / 6; // 30 degrees const double yaw_min = -CV_PI / 6, yaw_max = CV_PI / 6; const double roll_min = -CV_PI / 6, roll_max = CV_PI / 6; cv::Mat R = eulerAnglesToRotationMatrix(rng.uniform(pitch_min, pitch_max), rng.uniform(yaw_min, yaw_max), rng.uniform(roll_min, roll_max)); // generate random translation, // if test for homography fails try to fix translation to zero vec so H is related by transl. cv::Vec3d t (rng.uniform(-0.5f, 0.5f), rng.uniform(-0.5f, 0.5f), rng.uniform(1.0f, 2.0f)); // generate random calibration auto getRandomCalib = [&] () { return cv::Mat(cv::Matx33d(rng.uniform(100.0, 1000.0), 0, rng.uniform(100.0, 100.0), 0, rng.uniform(100.0, 1000.0), rng.uniform(-100.0, 100.0), 0, 0, 1.)); }; K1 = getRandomCalib(); K2 = two_calib ? getRandomCalib() : K1.clone(); auto updateTranslation = [] (const cv::Mat &pts, const cv::Mat &R_, cv::Vec3d &t_) { // Make sure the shape is in front of the camera cv::Mat points3d_transformed = R_ * pts + t_ * cv::Mat::ones(1, pts.cols, pts.type()); double min_dist, max_dist; cv::minMaxIdx(points3d_transformed.row(2), &min_dist, &max_dist); if (min_dist < 0) t_(2) -= min_dist + 1.0; }; // compute size of inliers and outliers const int inl_size = static_cast(inlier_ratio * pts_size); const int out_size = pts_size - inl_size; // all points will have top 'inl_size' of their points inliers gt_inliers.clear(); gt_inliers.reserve(inl_size); for (int i = 0; i < inl_size; i++) gt_inliers.emplace_back(i); // double precision to multiply points by models const int pts_type = CV_64F; cv::Mat points3d; if (test_case == TestSolver::Homogr) { points3d.create(2, inl_size, pts_type); rng.fill(points3d, cv::RNG::UNIFORM, 0.0, 1.0); // keep small range // inliers must be planar points, let their 3D coordinate be 1 cv::vconcat(points3d, cv::Mat::ones(1, inl_size, points3d.type()), points3d); } else if (test_case == TestSolver::Fundam || test_case == TestSolver::Essen) { // create 3D points which are inliers points3d.create(3, inl_size, pts_type); rng.fill(points3d, cv::RNG::UNIFORM, 0.0, 1.0); } else if (test_case == TestSolver::PnP) { //pts1 are image points, pts2 are object points pts2.create(3, inl_size, pts_type); // 3D inliers rng.fill(pts2, cv::RNG::UNIFORM, 0, 1); updateTranslation(pts2, R, t); // project 3D points (pts2) on image plane (pts1) pts1 = K1 * (R * pts2 + t * cv::Mat::ones(1, pts2.cols, pts2.type())); cv::divide(pts1.row(0), pts1.row(2), pts1.row(0)); cv::divide(pts1.row(1), pts1.row(2), pts1.row(1)); // make 2D points pts1 = pts1.rowRange(0, 2); // create random outliers cv::Mat pts_outliers = cv::Mat(5, out_size, pts2.type()); rng.fill(pts_outliers, cv::RNG::UNIFORM, 0, 1000); // merge inliers with random image points = outliers cv::hconcat(pts1, pts_outliers.rowRange(0, 2), pts1); // merge 3D inliers with 3D outliers cv::hconcat(pts2, pts_outliers.rowRange(2, 5), pts2); // add Gaussian noise to image points cv::Mat noise(pts1.rows, pts1.cols, pts1.type()); rng.fill(noise, cv::RNG::NORMAL, 0, noise_std); pts1 += noise; return inl_size; } else if (test_case == TestSolver::Affine) { } else CV_Error(cv::Error::StsBadArg, "Unknown solver!"); if (test_case != TestSolver::PnP) { // project 3D point on image plane // use two relative scenes. The first camera is P1 = K1 [I | 0], the second P2 = K2 [R | t] if (test_case != TestSolver::Affine) { updateTranslation(points3d, R, t); pts1 = K1 * points3d; pts2 = K2 * (R * points3d + t * cv::Mat::ones(1, points3d.cols, points3d.type())); // normalize by 3 coordinate cv::divide(pts1.row(0), pts1.row(2), pts1.row(0)); cv::divide(pts1.row(1), pts1.row(2), pts1.row(1)); cv::divide(pts2.row(0), pts2.row(2), pts2.row(0)); cv::divide(pts2.row(1), pts2.row(2), pts2.row(1)); } else { pts1 = cv::Mat(2, inl_size, pts_type); rng.fill(pts1, cv::RNG::UNIFORM, 0, 1000); cv::Matx33d sc(rng.uniform(1., 5.),0,0,rng.uniform(1., 4.),0,0, 0, 0, 1); cv::Matx33d tr(1,0,rng.uniform(50., 500.),0,1,rng.uniform(50., 500.), 0, 0, 1); const double phi = rng.uniform(0., CV_PI); cv::Matx33d rot(cos(phi), -sin(phi),0, sin(phi), cos(phi),0, 0, 0, 1); cv::Matx33d A = sc * tr * rot; cv::vconcat(pts1, cv::Mat::ones(1, pts1.cols, pts1.type()), points3d); pts2 = A * points3d; } // get 2D points pts1 = pts1.rowRange(0,2); pts2 = pts2.rowRange(0,2); // generate random outliers as 2D image points cv::Mat pts1_outliers(pts1.rows, out_size, pts1.type()), pts2_outliers(pts2.rows, out_size, pts2.type()); rng.fill(pts1_outliers, cv::RNG::UNIFORM, 0, 1000); rng.fill(pts2_outliers, cv::RNG::UNIFORM, 0, 1000); // merge inliers and outliers cv::hconcat(pts1, pts1_outliers, pts1); cv::hconcat(pts2, pts2_outliers, pts2); // add normal / Gaussian noise to image points cv::Mat noise1 (pts1.rows, pts1.cols, pts1.type()), noise2 (pts2.rows, pts2.cols, pts2.type()); rng.fill(noise1, cv::RNG::NORMAL, 0, noise_std); pts1 += noise1; rng.fill(noise2, cv::RNG::NORMAL, 0, noise_std); pts2 += noise2; } return inl_size; } /* * for test case = 0, 1, 2 (homography and epipolar geometry): pts1 and pts2 are 3xN * for test_case = 3 (PnP): pts1 are 3xN and pts2 are 4xN * all points are of the same type as model */ static double getError (TestSolver test_case, int pt_idx, const cv::Mat &pts1, const cv::Mat &pts2, const cv::Mat &model) { cv::Mat pt1 = pts1.col(pt_idx), pt2 = pts2.col(pt_idx); if (test_case == TestSolver::Homogr) { // reprojection error // compute Euclidean distance between given and reprojected points cv::Mat est_pt2 = model * pt1; est_pt2 /= est_pt2.at(2); if (false) { cv::Mat est_pt1 = model.inv() * pt2; est_pt1 /= est_pt1.at(2); return (cv::norm(est_pt1 - pt1) + cv::norm(est_pt2 - pt2)) / 2; } return cv::norm(est_pt2 - pt2); } else if (test_case == TestSolver::Fundam || test_case == TestSolver::Essen) { cv::Mat l2 = model * pt1; cv::Mat l1 = model.t() * pt2; if (test_case == TestSolver::Fundam) // sampson error return fabs(pt2.dot(l2)) / sqrt(pow(l1.at(0), 2) + pow(l1.at(1), 2) + pow(l2.at(0), 2) + pow(l2.at(1), 2)); else // symmetric geometric distance return sqrt(pow(pt1.dot(l1),2) / (pow(l1.at(0),2) + pow(l1.at(1),2)) + pow(pt2.dot(l2),2) / (pow(l2.at(0),2) + pow(l2.at(1),2))); } else if (test_case == TestSolver::PnP) { // PnP, reprojection error cv::Mat img_pt = model * pt2; img_pt /= img_pt.at(2); return cv::norm(pt1 - img_pt); } else CV_Error(cv::Error::StsBadArg, "Undefined test case!"); } /* * inl_size -- number of ground truth inliers * pts1 and pts2 are of the same size as from function generatePoints(...) */ static void checkInliersMask (TestSolver test_case, int inl_size, double thr, const cv::Mat &pts1_, const cv::Mat &pts2_, const cv::Mat &model, const cv::Mat &mask) { ASSERT_TRUE(!model.empty() && !mask.empty()); cv::Mat pts1 = pts1_, pts2 = pts2_; if (pts1.type() != model.type()) { pts1.convertTo(pts1, model.type()); pts2.convertTo(pts2, model.type()); } // convert to homogeneous cv::vconcat(pts1, cv::Mat::ones(1, pts1.cols, pts1.type()), pts1); cv::vconcat(pts2, cv::Mat::ones(1, pts2.cols, pts2.type()), pts2); thr *= 1.001; // increase a little threshold due to numerical imprecisions const auto * const mask_ptr = mask.ptr(); int num_found_inliers = 0; for (int i = 0; i < pts1.cols; i++) if (mask_ptr[i]) { ASSERT_LT(getError(test_case, i, pts1, pts2, model), thr); num_found_inliers++; } // check if RANSAC found at least 80% of inliers ASSERT_GT(num_found_inliers, 0.8 * inl_size); } TEST(usac_Homography, accuracy) { std::vector gt_inliers; const int pts_size = 1500; cv::RNG &rng = cv::theRNG(); // do not test USAC_PARALLEL, because it is not deterministic const std::vector flags = {USAC_DEFAULT, USAC_ACCURATE, USAC_PROSAC, USAC_FAST, USAC_MAGSAC}; for (double inl_ratio = 0.1; inl_ratio < 0.91; inl_ratio += 0.1) { cv::Mat pts1, pts2, K1, K2; int inl_size = generatePoints(rng, pts1, pts2, K1, K2, false /*two calib*/, pts_size, TestSolver ::Homogr, inl_ratio/*inl ratio*/, 0.1 /*noise std*/, gt_inliers); // compute max_iters with standard upper bound rule for RANSAC with 1.5x tolerance const double conf = 0.99, thr = 2., max_iters = 1.3 * log(1 - conf) / log(1 - pow(inl_ratio, 4 /* sample size */)); for (auto flag : flags) { cv::Mat mask, H = cv::findHomography(pts1, pts2,flag, thr, mask, int(max_iters), conf); checkInliersMask(TestSolver::Homogr, inl_size, thr, pts1, pts2, H, mask); } } } TEST(usac_Fundamental, accuracy) { std::vector gt_inliers; const int pts_size = 2000; cv::RNG &rng = cv::theRNG(); // start from 25% otherwise max_iters will be too big const std::vector flags = {USAC_DEFAULT, USAC_FM_8PTS, USAC_ACCURATE, USAC_PROSAC, USAC_FAST, USAC_MAGSAC}; const double conf = 0.99, thr = 1.; for (double inl_ratio = 0.25; inl_ratio < 0.91; inl_ratio += 0.1) { cv::Mat pts1, pts2, K1, K2; int inl_size = generatePoints(rng, pts1, pts2, K1, K2, false /*two calib*/, pts_size, TestSolver ::Fundam, inl_ratio, 0.1 /*noise std*/, gt_inliers); for (auto flag : flags) { const int sample_size = flag == USAC_FM_8PTS ? 8 : 7; const double max_iters = 1.25 * log(1 - conf) / log(1 - pow(inl_ratio, sample_size)); cv::Mat mask, F = cv::findFundamentalMat(pts1, pts2,flag, thr, conf, int(max_iters), mask); checkInliersMask(TestSolver::Fundam, inl_size, thr, pts1, pts2, F, mask); } }} TEST(usac_Essential, accuracy) { std::vector gt_inliers; const int pts_size = 1500; cv::RNG &rng = cv::theRNG(); // findEssentilaMat has by default number of maximum iterations equal to 1000. // It means that with 99% confidence we assume at least 34.08% of inliers const std::vector flags = {USAC_DEFAULT, USAC_ACCURATE, USAC_PROSAC, USAC_FAST, USAC_MAGSAC}; for (double inl_ratio = 0.35; inl_ratio < 0.91; inl_ratio += 0.1) { cv::Mat pts1, pts2, K1, K2; int inl_size = generatePoints(rng, pts1, pts2, K1, K2, false /*two calib*/, pts_size, TestSolver ::Fundam, inl_ratio, 0.01 /*noise std, works bad with high noise*/, gt_inliers); const double conf = 0.99, thr = 1.; for (auto flag : flags) { cv::Mat mask, E; try { E = cv::findEssentialMat(pts1, pts2, K1, flag, conf, thr, mask); } catch (cv::Exception &e) { if (e.code != cv::Error::StsNotImplemented) FAIL() << "Essential matrix estimation failed!\n"; else continue; } // calibrate points cv::Mat cpts1_3d, cpts2_3d; cv::vconcat(pts1, cv::Mat::ones(1, pts1.cols, pts1.type()), cpts1_3d); cv::vconcat(pts2, cv::Mat::ones(1, pts2.cols, pts2.type()), cpts2_3d); cpts1_3d = K1.inv() * cpts1_3d; cpts2_3d = K1.inv() * cpts2_3d; checkInliersMask(TestSolver::Essen, inl_size, thr / ((K1.at(0,0) + K1.at(1,1)) / 2), cpts1_3d.rowRange(0,2), cpts2_3d.rowRange(0,2), E, mask); } } } TEST(usac_P3P, accuracy) { std::vector gt_inliers; const int pts_size = 3000; cv::Mat img_pts, obj_pts, K1, K2; cv::RNG &rng = cv::theRNG(); const std::vector flags = {USAC_DEFAULT, USAC_ACCURATE, USAC_PROSAC, USAC_FAST, USAC_MAGSAC}; for (double inl_ratio = 0.1; inl_ratio < 0.91; inl_ratio += 0.1) { int inl_size = generatePoints(rng, img_pts, obj_pts, K1, K2, false /*two calib*/, pts_size, TestSolver ::PnP, inl_ratio, 0.15 /*noise std*/, gt_inliers); const double conf = 0.99, thr = 2., max_iters = 1.3 * log(1 - conf) / log(1 - pow(inl_ratio, 3 /* sample size */)); for (auto flag : flags) { cv::Mat rvec, tvec, mask, R, P; CV_Assert(cv::solvePnPRansac(obj_pts, img_pts, K1, cv::noArray(), rvec, tvec, false, (int)max_iters, (float)thr, conf, mask, flag)); cv::Rodrigues(rvec, R); cv::hconcat(K1 * R, K1 * tvec, P); checkInliersMask(TestSolver ::PnP, inl_size, thr, img_pts, obj_pts, P, mask); } } } TEST (usac_Affine2D, accuracy) { std::vector gt_inliers; const int pts_size = 2000; cv::Mat pts1, pts2, K1, K2; cv::RNG &rng = cv::theRNG(); const std::vector flags = {USAC_DEFAULT, USAC_ACCURATE, USAC_PROSAC, USAC_FAST, USAC_MAGSAC}; for (double inl_ratio = 0.1; inl_ratio < 0.91; inl_ratio += 0.1) { int inl_size = generatePoints(rng, pts1, pts2, K1, K2, false /*two calib*/, pts_size, TestSolver ::Affine, inl_ratio, 0.15 /*noise std*/, gt_inliers); const double conf = 0.99, thr = 2., max_iters = 1.3 * log(1 - conf) / log(1 - pow(inl_ratio, 3 /* sample size */)); for (auto flag : flags) { cv::Mat mask, A = cv::estimateAffine2D(pts1, pts2, mask, flag, thr, (size_t)max_iters, conf, 0); cv::vconcat(A, cv::Mat(cv::Matx13d(0,0,1)), A); checkInliersMask(TestSolver::Homogr /*use homography error*/, inl_size, thr, pts1, pts2, A, mask); } } } TEST(usac_testUsacParams, accuracy) { std::vector gt_inliers; const int pts_size = 1500; cv::RNG &rng = cv::theRNG(); const cv::UsacParams usac_params = cv::UsacParams(); cv::Mat pts1, pts2, K1, K2, mask, model, rvec, tvec, R; int inl_size; auto getInlierRatio = [] (int max_iters, int sample_size, double conf) { return std::pow(1 - exp(log(1 - conf)/(double)max_iters), 1 / (double)sample_size); }; cv::Vec4d dist_coeff (0, 0, 0, 0); // test with 0 distortion // Homography matrix inl_size = generatePoints(rng, pts1, pts2, K1, K2, false, pts_size, TestSolver::Homogr, getInlierRatio(usac_params.maxIterations, 4, usac_params.confidence), 0.1, gt_inliers); model = cv::findHomography(pts1, pts2, mask, usac_params); checkInliersMask(TestSolver::Homogr, inl_size, usac_params.threshold, pts1, pts2, model, mask); // Fundamental matrix inl_size = generatePoints(rng, pts1, pts2, K1, K2, false, pts_size, TestSolver::Fundam, getInlierRatio(usac_params.maxIterations, 7, usac_params.confidence), 0.1, gt_inliers); model = cv::findFundamentalMat(pts1, pts2, mask, usac_params); checkInliersMask(TestSolver::Fundam, inl_size, usac_params.threshold, pts1, pts2, model, mask); // Essential matrix inl_size = generatePoints(rng, pts1, pts2, K1, K2, true, pts_size, TestSolver::Essen, getInlierRatio(usac_params.maxIterations, 5, usac_params.confidence), 0.01, gt_inliers); try { model = cv::findEssentialMat(pts1, pts2, K1, K2, dist_coeff, dist_coeff, mask, usac_params); cv::Mat cpts1_3d, cpts2_3d; cv::vconcat(pts1, cv::Mat::ones(1, pts1.cols, pts1.type()), cpts1_3d); cv::vconcat(pts2, cv::Mat::ones(1, pts2.cols, pts2.type()), cpts2_3d); cpts1_3d = K1.inv() * cpts1_3d; cpts2_3d = K2.inv() * cpts2_3d; checkInliersMask(TestSolver::Essen, inl_size, usac_params.threshold / ((K1.at(0,0) + K1.at(1,1) + K2.at(0,0) + K2.at(1,1)) / 4), cpts1_3d.rowRange(0,2), cpts2_3d.rowRange(0,2), model, mask); } catch (cv::Exception &e) { if (e.code != cv::Error::StsNotImplemented) FAIL() << "Essential matrix estimation failed!\n"; // CV_Error(cv::Error::StsError, "Essential matrix estimation failed!"); } // P3P inl_size = generatePoints(rng, pts1, pts2, K1, K2, false, pts_size, TestSolver::PnP, getInlierRatio(usac_params.maxIterations, 3, usac_params.confidence), 0.01, gt_inliers); CV_Assert(cv::solvePnPRansac(pts2, pts1, K1, dist_coeff, rvec, tvec, mask, usac_params)); cv::Rodrigues(rvec, R); cv::hconcat(K1 * R, K1 * tvec, model); checkInliersMask(TestSolver::PnP, inl_size, usac_params.threshold, pts1, pts2, model, mask); // P6P inl_size = generatePoints(rng, pts1, pts2, K1, K2, false, pts_size, TestSolver::PnP, getInlierRatio(usac_params.maxIterations, 6, usac_params.confidence), 0.1, gt_inliers); cv::Mat K_est; CV_Assert(cv::solvePnPRansac(pts2, pts1, K_est, dist_coeff, rvec, tvec, mask, usac_params)); cv::Rodrigues(rvec, R); cv::hconcat(K_est * R, K_est * tvec, model); checkInliersMask(TestSolver::PnP, inl_size, usac_params.threshold, pts1, pts2, model, mask); // Affine2D inl_size = generatePoints(rng, pts1, pts2, K1, K2, false, pts_size, TestSolver::Affine, getInlierRatio(usac_params.maxIterations, 3, usac_params.confidence), 0.1, gt_inliers); model = cv::estimateAffine2D(pts1, pts2, mask, usac_params); cv::vconcat(model, cv::Mat(cv::Matx13d(0,0,1)), model); checkInliersMask(TestSolver::Homogr, inl_size, usac_params.threshold, pts1, pts2, model, mask); } }