/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #ifdef HAVE_CUDA /////////////////////////////////////////////////////////////////////////////////////////////////////// // threshold struct Threshold : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int type; int threshOp; cv::Size size; cv::Mat src; double maxVal; double thresh; cv::Mat dst_gold; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); type = std::tr1::get<1>(GetParam()); threshOp = std::tr1::get<2>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150)); src = cvtest::randomMat(rng, size, type, 0.0, 127.0, false); maxVal = rng.uniform(20.0, 127.0); thresh = rng.uniform(0.0, maxVal); cv::threshold(src, dst_gold, thresh, maxVal, threshOp); } }; TEST_P(Threshold, Accuracy) { static const char* ops[] = {"THRESH_BINARY", "THRESH_BINARY_INV", "THRESH_TRUNC", "THRESH_TOZERO", "THRESH_TOZERO_INV"}; const char* threshOpStr = ops[threshOp]; PRINT_PARAM(devInfo); PRINT_TYPE(type); PRINT_PARAM(size); PRINT_PARAM(threshOpStr); PRINT_PARAM(maxVal); PRINT_PARAM(thresh); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::threshold(cv::gpu::GpuMat(src), gpuRes, thresh, maxVal, threshOp); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(ImgProc, Threshold, testing::Combine( testing::ValuesIn(devices()), testing::Values(CV_8U, CV_32F), testing::Values((int)cv::THRESH_BINARY, (int)cv::THRESH_BINARY_INV, (int)cv::THRESH_TRUNC, (int)cv::THRESH_TOZERO, (int)cv::THRESH_TOZERO_INV))); /////////////////////////////////////////////////////////////////////////////////////////////////////// // resize struct Resize : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int type; int interpolation; cv::Size size; cv::Mat src; cv::Mat dst_gold1; cv::Mat dst_gold2; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); type = std::tr1::get<1>(GetParam()); interpolation = std::tr1::get<2>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150)); src = cvtest::randomMat(rng, size, type, 0.0, 127.0, false); cv::resize(src, dst_gold1, cv::Size(), 2.0, 2.0, interpolation); cv::resize(src, dst_gold2, cv::Size(), 0.5, 0.5, interpolation); } }; TEST_P(Resize, Accuracy) { static const char* interpolations[] = {"INTER_NEAREST", "INTER_LINEAR"}; const char* interpolationStr = interpolations[interpolation]; PRINT_PARAM(devInfo); PRINT_TYPE(type); PRINT_PARAM(size); PRINT_PARAM(interpolationStr); cv::Mat dst1; cv::Mat dst2; ASSERT_NO_THROW( cv::gpu::GpuMat dev_src(src); cv::gpu::GpuMat gpuRes1; cv::gpu::GpuMat gpuRes2; cv::gpu::resize(dev_src, gpuRes1, cv::Size(), 2.0, 2.0, interpolation); cv::gpu::resize(dev_src, gpuRes2, cv::Size(), 0.5, 0.5, interpolation); gpuRes1.download(dst1); gpuRes2.download(dst2); ); EXPECT_MAT_SIMILAR(dst_gold1, dst1, 0.5); EXPECT_MAT_SIMILAR(dst_gold2, dst2, 0.5); } INSTANTIATE_TEST_CASE_P(ImgProc, Resize, testing::Combine( testing::ValuesIn(devices()), testing::Values(CV_8UC1, CV_8UC4), testing::Values((int)cv::INTER_NEAREST, (int)cv::INTER_LINEAR))); /////////////////////////////////////////////////////////////////////////////////////////////////////// // copyMakeBorder struct CopyMakeBorder : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int type; cv::Size size; cv::Mat src; int top; int botton; int left; int right; cv::Scalar val; cv::Mat dst_gold; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); type = std::tr1::get<1>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150)); src = cvtest::randomMat(rng, size, type, 0.0, 127.0, false); top = rng.uniform(1, 10); botton = rng.uniform(1, 10); left = rng.uniform(1, 10); right = rng.uniform(1, 10); val = cv::Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255)); cv::copyMakeBorder(src, dst_gold, top, botton, left, right, cv::BORDER_CONSTANT, val); } }; TEST_P(CopyMakeBorder, Accuracy) { PRINT_PARAM(devInfo); PRINT_TYPE(type); PRINT_PARAM(size); PRINT_PARAM(top); PRINT_PARAM(botton); PRINT_PARAM(left); PRINT_PARAM(right); PRINT_PARAM(val); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::copyMakeBorder(cv::gpu::GpuMat(src), gpuRes, top, botton, left, right, val); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(ImgProc, CopyMakeBorder, testing::Combine( testing::ValuesIn(devices()), testing::Values(CV_8UC1, CV_8UC4, CV_32SC1))); /////////////////////////////////////////////////////////////////////////////////////////////////////// // warpAffine & warpPerspective static const int warpFlags[] = {cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::INTER_NEAREST | cv::WARP_INVERSE_MAP, cv::INTER_LINEAR | cv::WARP_INVERSE_MAP, cv::INTER_CUBIC | cv::WARP_INVERSE_MAP}; static const char* warpFlags_str[] = {"INTER_NEAREST", "INTER_LINEAR", "INTER_CUBIC", "INTER_NEAREST | WARP_INVERSE_MAP", "INTER_LINEAR | WARP_INVERSE_MAP", "INTER_CUBIC | WARP_INVERSE_MAP"}; struct WarpAffine : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int type; int flagIdx; cv::Size size; cv::Mat src; cv::Mat M; cv::Mat dst_gold; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); type = std::tr1::get<1>(GetParam()); flagIdx = std::tr1::get<2>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150)); src = cvtest::randomMat(rng, size, type, 0.0, 127.0, false); static double reflect[2][3] = { {-1, 0, 0}, { 0, -1, 0}}; reflect[0][2] = size.width; reflect[1][2] = size.height; M = cv::Mat(2, 3, CV_64F, (void*)reflect); cv::warpAffine(src, dst_gold, M, src.size(), warpFlags[flagIdx]); } }; TEST_P(WarpAffine, Accuracy) { const char* warpFlagStr = warpFlags_str[flagIdx]; PRINT_PARAM(devInfo); PRINT_TYPE(type); PRINT_PARAM(size); PRINT_PARAM(warpFlagStr); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::warpAffine(cv::gpu::GpuMat(src), gpuRes, M, src.size(), warpFlags[flagIdx]); gpuRes.download(dst); ); // Check inner parts (ignoring 1 pixel width border) cv::Mat dst_gold_roi = dst_gold.rowRange(1, dst_gold.rows - 1).colRange(1, dst_gold.cols - 1); cv::Mat dst_roi = dst.rowRange(1, dst.rows - 1).colRange(1, dst.cols - 1); EXPECT_MAT_NEAR(dst_gold_roi, dst_roi, 1e-3); } struct WarpPerspective : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int type; int flagIdx; cv::Size size; cv::Mat src; cv::Mat M; cv::Mat dst_gold; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); type = std::tr1::get<1>(GetParam()); flagIdx = std::tr1::get<2>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150)); src = cvtest::randomMat(rng, size, type, 0.0, 127.0, false); static double reflect[3][3] = { { -1, 0, 0}, { 0, -1, 0}, { 0, 0, 1}}; reflect[0][2] = size.width; reflect[1][2] = size.height; M = cv::Mat(3, 3, CV_64F, (void*)reflect); cv::warpPerspective(src, dst_gold, M, src.size(), warpFlags[flagIdx]); } }; TEST_P(WarpPerspective, Accuracy) { const char* warpFlagStr = warpFlags_str[flagIdx]; PRINT_PARAM(devInfo); PRINT_TYPE(type); PRINT_PARAM(size); PRINT_PARAM(warpFlagStr); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::warpPerspective(cv::gpu::GpuMat(src), gpuRes, M, src.size(), warpFlags[flagIdx]); gpuRes.download(dst); ); // Check inner parts (ignoring 1 pixel width border) cv::Mat dst_gold_roi = dst_gold.rowRange(1, dst_gold.rows - 1).colRange(1, dst_gold.cols - 1); cv::Mat dst_roi = dst.rowRange(1, dst.rows - 1).colRange(1, dst.cols - 1); EXPECT_MAT_NEAR(dst_gold_roi, dst_roi, 1e-3); } INSTANTIATE_TEST_CASE_P(ImgProc, WarpAffine, testing::Combine( testing::ValuesIn(devices()), testing::Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4), testing::Range(0, 6))); INSTANTIATE_TEST_CASE_P(ImgProc, WarpPerspective, testing::Combine( testing::ValuesIn(devices()), testing::Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4), testing::Range(0, 6))); /////////////////////////////////////////////////////////////////////////////////////////////////////// // integral struct Integral : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; cv::Size size; cv::Mat src; cv::Mat dst_gold; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); size = cv::Size(rng.uniform(20, 150), rng.uniform(20, 150)); src = cvtest::randomMat(rng, size, CV_8UC1, 0.0, 255.0, false); cv::integral(src, dst_gold, CV_32S); } }; TEST_P(Integral, Accuracy) { PRINT_PARAM(devInfo); PRINT_PARAM(size); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::integral(cv::gpu::GpuMat(src), gpuRes); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(ImgProc, Integral, testing::ValuesIn(devices())); /////////////////////////////////////////////////////////////////////////////////////////////////////// // cvtColor struct CvtColor : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int type; cv::Mat img; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); type = std::tr1::get<1>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); cv::Mat imgBase = readImage("stereobm/aloe-L.png"); ASSERT_FALSE(imgBase.empty()); imgBase.convertTo(img, type, type == CV_32F ? 1.0 / 255.0 : 1.0); } }; TEST_P(CvtColor, BGR2RGB) { PRINT_PARAM(devInfo); PRINT_TYPE(type); cv::Mat src = img; cv::Mat dst_gold; cv::cvtColor(src, dst_gold, CV_BGR2RGB); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGR2RGB); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST_P(CvtColor, BGR2RGBA) { PRINT_PARAM(devInfo); PRINT_TYPE(type); cv::Mat src = img; cv::Mat dst_gold; cv::cvtColor(src, dst_gold, CV_BGR2RGBA); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGR2RGBA); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST_P(CvtColor, BGRA2RGB) { PRINT_PARAM(devInfo); PRINT_TYPE(type); cv::Mat src; cv::cvtColor(img, src, CV_BGR2BGRA); cv::Mat dst_gold; cv::cvtColor(src, dst_gold, CV_BGRA2RGB); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGRA2RGB); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } TEST_P(CvtColor, BGR2YCrCb) { PRINT_PARAM(devInfo); PRINT_TYPE(type); cv::Mat src = img; cv::Mat dst_gold; cv::cvtColor(src, dst_gold, CV_BGR2YCrCb); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGR2YCrCb); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 1e-5); } TEST_P(CvtColor, YCrCb2RGB) { PRINT_PARAM(devInfo); PRINT_TYPE(type); cv::Mat src; cv::cvtColor(img, src, CV_BGR2YCrCb); cv::Mat dst_gold; cv::cvtColor(src, dst_gold, CV_YCrCb2RGB); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_YCrCb2RGB); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 1e-5); } TEST_P(CvtColor, BGR2YUV) { PRINT_PARAM(devInfo); PRINT_TYPE(type); cv::Mat src = img; cv::Mat dst_gold; cv::cvtColor(src, dst_gold, CV_BGR2YUV); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGR2YUV); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 1e-5); } TEST_P(CvtColor, YUV2BGR) { PRINT_PARAM(devInfo); PRINT_TYPE(type); cv::Mat src; cv::cvtColor(img, src, CV_BGR2YUV); cv::Mat dst_gold; cv::cvtColor(src, dst_gold, CV_YUV2BGR); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_YUV2BGR); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 1e-5); } TEST_P(CvtColor, BGR2XYZ) { PRINT_PARAM(devInfo); PRINT_TYPE(type); cv::Mat src = img; cv::Mat dst_gold; cv::cvtColor(src, dst_gold, CV_BGR2XYZ); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGR2XYZ); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 1e-5); } TEST_P(CvtColor, XYZ2BGR) { PRINT_PARAM(devInfo); PRINT_TYPE(type); cv::Mat src; cv::cvtColor(img, src, CV_BGR2XYZ); cv::Mat dst_gold; cv::cvtColor(src, dst_gold, CV_XYZ2BGR); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_XYZ2BGR); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 1e-5); } TEST_P(CvtColor, BGR2HSV) { if (type == CV_16U) return; PRINT_PARAM(devInfo); PRINT_TYPE(type); cv::Mat src = img; cv::Mat dst_gold; cv::cvtColor(src, dst_gold, CV_BGR2HSV); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGR2HSV); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, type == CV_32F ? 1e-2 : 1); } TEST_P(CvtColor, HSV2BGR) { if (type == CV_16U) return; PRINT_PARAM(devInfo); PRINT_TYPE(type); cv::Mat src; cv::cvtColor(img, src, CV_BGR2HSV); cv::Mat dst_gold; cv::cvtColor(src, dst_gold, CV_HSV2BGR); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_HSV2BGR); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, type == CV_32F ? 1e-2 : 1); } TEST_P(CvtColor, BGR2HSV_FULL) { if (type == CV_16U) return; PRINT_PARAM(devInfo); PRINT_TYPE(type); cv::Mat src = img; cv::Mat dst_gold; cv::cvtColor(src, dst_gold, CV_BGR2HSV_FULL); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGR2HSV_FULL); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, type == CV_32F ? 1e-2 : 1); } TEST_P(CvtColor, HSV2BGR_FULL) { if (type == CV_16U) return; PRINT_PARAM(devInfo); PRINT_TYPE(type); cv::Mat src; cv::cvtColor(img, src, CV_BGR2HSV_FULL); cv::Mat dst_gold; cv::cvtColor(src, dst_gold, CV_HSV2BGR_FULL); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_HSV2BGR_FULL); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, type == CV_32F ? 1e-2 : 1); } TEST_P(CvtColor, BGR2HLS) { if (type == CV_16U) return; PRINT_PARAM(devInfo); PRINT_TYPE(type); cv::Mat src = img; cv::Mat dst_gold; cv::cvtColor(src, dst_gold, CV_BGR2HLS); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGR2HLS); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, type == CV_32F ? 1e-2 : 1); } TEST_P(CvtColor, HLS2BGR) { if (type == CV_16U) return; PRINT_PARAM(devInfo); PRINT_TYPE(type); cv::Mat src; cv::cvtColor(img, src, CV_BGR2HLS); cv::Mat dst_gold; cv::cvtColor(src, dst_gold, CV_HLS2BGR); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_HLS2BGR); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, type == CV_32F ? 1e-2 : 1); } TEST_P(CvtColor, BGR2HLS_FULL) { if (type == CV_16U) return; PRINT_PARAM(devInfo); PRINT_TYPE(type); cv::Mat src = img; cv::Mat dst_gold; cv::cvtColor(src, dst_gold, CV_BGR2HLS_FULL); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGR2HLS_FULL); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, type == CV_32F ? 1e-2 : 1); } TEST_P(CvtColor, HLS2BGR_FULL) { if (type == CV_16U) return; PRINT_PARAM(devInfo); PRINT_TYPE(type); cv::Mat src; cv::cvtColor(img, src, CV_BGR2HLS_FULL); cv::Mat dst_gold; cv::cvtColor(src, dst_gold, CV_HLS2BGR_FULL); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_HLS2BGR_FULL); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, type == CV_32F ? 1e-2 : 1); } TEST_P(CvtColor, BGR2GRAY) { PRINT_PARAM(devInfo); PRINT_TYPE(type); cv::Mat src = img; cv::Mat dst_gold; cv::cvtColor(src, dst_gold, CV_BGR2GRAY); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_BGR2GRAY); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 1e-5); } TEST_P(CvtColor, GRAY2RGB) { PRINT_PARAM(devInfo); PRINT_TYPE(type); cv::Mat src; cv::cvtColor(img, src, CV_BGR2GRAY); cv::Mat dst_gold; cv::cvtColor(src, dst_gold, CV_GRAY2RGB); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuRes; cv::gpu::cvtColor(cv::gpu::GpuMat(src), gpuRes, CV_GRAY2RGB); gpuRes.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } INSTANTIATE_TEST_CASE_P(ImgProc, CvtColor, testing::Combine( testing::ValuesIn(devices()), testing::Values(CV_8U, CV_16U, CV_32F))); /////////////////////////////////////////////////////////////////////////////////////////////////////// // histograms struct HistEven : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; cv::Mat hsv; int hbins; float hranges[2]; cv::Mat hist_gold; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); cv::Mat img = readImage("stereobm/aloe-L.png"); ASSERT_FALSE(img.empty()); cv::cvtColor(img, hsv, CV_BGR2HSV); hbins = 30; hranges[0] = 0; hranges[1] = 180; int histSize[] = {hbins}; const float* ranges[] = {hranges}; cv::MatND histnd; int channels[] = {0}; cv::calcHist(&hsv, 1, channels, cv::Mat(), histnd, 1, histSize, ranges); hist_gold = histnd; hist_gold = hist_gold.t(); hist_gold.convertTo(hist_gold, CV_32S); } }; TEST_P(HistEven, Accuracy) { ASSERT_TRUE(!hsv.empty()); PRINT_PARAM(devInfo); cv::Mat hist; ASSERT_NO_THROW( std::vector srcs; cv::gpu::split(cv::gpu::GpuMat(hsv), srcs); cv::gpu::GpuMat gpuHist; cv::gpu::histEven(srcs[0], gpuHist, hbins, (int)hranges[0], (int)hranges[1]); gpuHist.download(hist); ); EXPECT_MAT_NEAR(hist_gold, hist, 0.0); } INSTANTIATE_TEST_CASE_P(ImgProc, HistEven, testing::ValuesIn(devices())); struct CalcHist : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; cv::Size size; cv::Mat src; cv::Mat hist_gold; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); src = cvtest::randomMat(rng, size, CV_8UC1, 0, 255, false); hist_gold.create(1, 256, CV_32SC1); hist_gold.setTo(cv::Scalar::all(0)); int* hist = hist_gold.ptr(); for (int y = 0; y < src.rows; ++y) { const uchar* src_row = src.ptr(y); for (int x = 0; x < src.cols; ++x) ++hist[src_row[x]]; } } }; TEST_P(CalcHist, Accuracy) { PRINT_PARAM(devInfo); PRINT_PARAM(size); cv::Mat hist; ASSERT_NO_THROW( cv::gpu::GpuMat gpuHist; cv::gpu::calcHist(cv::gpu::GpuMat(src), gpuHist); gpuHist.download(hist); ); EXPECT_MAT_NEAR(hist_gold, hist, 0.0); } INSTANTIATE_TEST_CASE_P(ImgProc, CalcHist, testing::ValuesIn(devices())); struct EqualizeHist : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; cv::Size size; cv::Mat src; cv::Mat dst_gold; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); src = cvtest::randomMat(rng, size, CV_8UC1, 0, 255, false); cv::equalizeHist(src, dst_gold); } }; TEST_P(EqualizeHist, Accuracy) { PRINT_PARAM(devInfo); PRINT_PARAM(size); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpuDst; cv::gpu::equalizeHist(cv::gpu::GpuMat(src), gpuDst); gpuDst.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 3.0); } INSTANTIATE_TEST_CASE_P(ImgProc, EqualizeHist, testing::ValuesIn(devices())); /////////////////////////////////////////////////////////////////////////////////////////////////////// // cornerHarris static const int borderTypes[] = {cv::BORDER_REPLICATE, cv::BORDER_CONSTANT, cv::BORDER_REFLECT, cv::BORDER_WRAP, cv::BORDER_REFLECT101, cv::BORDER_TRANSPARENT}; static const char* borderTypes_str[] = {"BORDER_REPLICATE", "BORDER_CONSTANT", "BORDER_REFLECT", "BORDER_WRAP", "BORDER_REFLECT101", "BORDER_TRANSPARENT"}; struct CornerHarris : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int type; int borderTypeIdx; cv::Mat src; int blockSize; int apertureSize; double k; cv::Mat dst_gold; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); type = std::tr1::get<1>(GetParam()); borderTypeIdx = std::tr1::get<2>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); cv::Mat img = readImage("stereobm/aloe-L.png", CV_LOAD_IMAGE_GRAYSCALE); ASSERT_FALSE(img.empty()); img.convertTo(src, type, type == CV_32F ? 1.0 / 255.0 : 1.0); blockSize = 1 + rng.next() % 5; apertureSize = 1 + 2 * (rng.next() % 4); k = rng.uniform(0.1, 0.9); cv::cornerHarris(src, dst_gold, blockSize, apertureSize, k, borderTypes[borderTypeIdx]); } }; TEST_P(CornerHarris, Accuracy) { const char* borderTypeStr = borderTypes_str[borderTypeIdx]; PRINT_PARAM(devInfo); PRINT_TYPE(type); PRINT_PARAM(borderTypeStr); PRINT_PARAM(blockSize); PRINT_PARAM(apertureSize); PRINT_PARAM(k); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat dev_dst; cv::gpu::cornerHarris(cv::gpu::GpuMat(src), dev_dst, blockSize, apertureSize, k, borderTypes[borderTypeIdx]); dev_dst.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 1e-3); } INSTANTIATE_TEST_CASE_P(ImgProc, CornerHarris, testing::Combine( testing::ValuesIn(devices()), testing::Values(CV_8UC1, CV_32FC1), testing::Values(0, 4))); /////////////////////////////////////////////////////////////////////////////////////////////////////// // cornerMinEigen struct CornerMinEigen : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int type; int borderTypeIdx; cv::Mat src; int blockSize; int apertureSize; cv::Mat dst_gold; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); type = std::tr1::get<1>(GetParam()); borderTypeIdx = std::tr1::get<2>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); cv::Mat img = readImage("stereobm/aloe-L.png", CV_LOAD_IMAGE_GRAYSCALE); ASSERT_FALSE(img.empty()); img.convertTo(src, type, type == CV_32F ? 1.0 / 255.0 : 1.0); blockSize = 1 + rng.next() % 5; apertureSize = 1 + 2 * (rng.next() % 4); cv::cornerMinEigenVal(src, dst_gold, blockSize, apertureSize, borderTypes[borderTypeIdx]); } }; TEST_P(CornerMinEigen, Accuracy) { const char* borderTypeStr = borderTypes_str[borderTypeIdx]; PRINT_PARAM(devInfo); PRINT_TYPE(type); PRINT_PARAM(borderTypeStr); PRINT_PARAM(blockSize); PRINT_PARAM(apertureSize); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat dev_dst; cv::gpu::cornerMinEigenVal(cv::gpu::GpuMat(src), dev_dst, blockSize, apertureSize, borderTypes[borderTypeIdx]); dev_dst.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 1e-2); } INSTANTIATE_TEST_CASE_P(ImgProc, CornerMinEigen, testing::Combine( testing::ValuesIn(devices()), testing::Values(CV_8UC1, CV_32FC1), testing::Values(0, 4))); //////////////////////////////////////////////////////////////////////// // ColumnSum struct ColumnSum : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; cv::Size size; cv::Mat src; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 400), rng.uniform(100, 400)); src = cvtest::randomMat(rng, size, CV_32F, 0.0, 1.0, false); } }; TEST_P(ColumnSum, Accuracy) { PRINT_PARAM(devInfo); PRINT_PARAM(size); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat dev_dst; cv::gpu::columnSum(cv::gpu::GpuMat(src), dev_dst); dev_dst.download(dst); ); for (int j = 0; j < src.cols; ++j) { float gold = src.at(0, j); float res = dst.at(0, j); ASSERT_NEAR(res, gold, 0.5); } for (int i = 1; i < src.rows; ++i) { for (int j = 0; j < src.cols; ++j) { float gold = src.at(i, j) += src.at(i - 1, j); float res = dst.at(i, j); ASSERT_NEAR(res, gold, 0.5); } } } INSTANTIATE_TEST_CASE_P(ImgProc, ColumnSum, testing::ValuesIn(devices())); //////////////////////////////////////////////////////////////////////// // Norm static const int normTypes[] = {cv::NORM_INF, cv::NORM_L1, cv::NORM_L2}; static const char* normTypes_str[] = {"NORM_INF", "NORM_L1", "NORM_L2"}; struct Norm : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int type; int normTypeIdx; cv::Size size; cv::Mat src; double gold; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); type = std::tr1::get<1>(GetParam()); normTypeIdx = std::tr1::get<2>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 400), rng.uniform(100, 400)); src = cvtest::randomMat(rng, size, type, 0.0, 10.0, false); gold = cv::norm(src, normTypes[normTypeIdx]); } }; TEST_P(Norm, Accuracy) { const char* normTypeStr = normTypes_str[normTypeIdx]; PRINT_PARAM(devInfo); PRINT_TYPE(type); PRINT_PARAM(size); PRINT_PARAM(normTypeStr); double res; ASSERT_NO_THROW( res = cv::gpu::norm(cv::gpu::GpuMat(src), normTypes[normTypeIdx]); ); ASSERT_NEAR(res, gold, 0.5); } INSTANTIATE_TEST_CASE_P(ImgProc, Norm, testing::Combine( testing::ValuesIn(devices()), testing::ValuesIn(types(CV_8U, CV_32F, 1, 1)), testing::Range(0, 3))); //////////////////////////////////////////////////////////////////////////////// // reprojectImageTo3D struct ReprojectImageTo3D : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; cv::Size size; cv::Mat disp; cv::Mat Q; cv::Mat dst_gold; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 500), rng.uniform(100, 500)); disp = cvtest::randomMat(rng, size, CV_8UC1, 5.0, 30.0, false); Q = cvtest::randomMat(rng, cv::Size(4, 4), CV_32FC1, 0.1, 1.0, false); cv::reprojectImageTo3D(disp, dst_gold, Q, false); } }; TEST_P(ReprojectImageTo3D, Accuracy) { PRINT_PARAM(devInfo); PRINT_PARAM(size); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat gpures; cv::gpu::reprojectImageTo3D(cv::gpu::GpuMat(disp), gpures, Q); gpures.download(dst); ); ASSERT_EQ(dst_gold.size(), dst.size()); for (int y = 0; y < dst_gold.rows; ++y) { const cv::Vec3f* cpu_row = dst_gold.ptr(y); const cv::Vec4f* gpu_row = dst.ptr(y); for (int x = 0; x < dst_gold.cols; ++x) { cv::Vec3f gold = cpu_row[x]; cv::Vec4f res = gpu_row[x]; ASSERT_NEAR(res[0], gold[0], 1e-5); ASSERT_NEAR(res[1], gold[1], 1e-5); ASSERT_NEAR(res[2], gold[2], 1e-5); } } } INSTANTIATE_TEST_CASE_P(ImgProc, ReprojectImageTo3D, testing::ValuesIn(devices())); //////////////////////////////////////////////////////////////////////////////// // meanShift struct MeanShift : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; cv::Mat rgba; int spatialRad; int colorRad; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); cv::Mat img = readImage("meanshift/cones.png"); ASSERT_FALSE(img.empty()); cv::cvtColor(img, rgba, CV_BGR2BGRA); spatialRad = 30; colorRad = 30; } }; TEST_P(MeanShift, Filtering) { cv::Mat img_template; if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20)) img_template = readImage("meanshift/con_result.png"); else img_template = readImage("meanshift/con_result_CC1X.png"); ASSERT_FALSE(img_template.empty()); PRINT_PARAM(devInfo); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat dev_dst; cv::gpu::meanShiftFiltering(cv::gpu::GpuMat(rgba), dev_dst, spatialRad, colorRad); dev_dst.download(dst); ); ASSERT_EQ(CV_8UC4, dst.type()); cv::Mat result; cv::cvtColor(dst, result, CV_BGRA2BGR); EXPECT_MAT_NEAR(img_template, result, 0.0); } TEST_P(MeanShift, Proc) { cv::Mat spmap_template; cv::FileStorage fs; if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20)) fs.open(std::string(cvtest::TS::ptr()->get_data_path()) + "meanshift/spmap.yaml", cv::FileStorage::READ); else fs.open(std::string(cvtest::TS::ptr()->get_data_path()) + "meanshift/spmap_CC1X.yaml", cv::FileStorage::READ); ASSERT_TRUE(fs.isOpened()); fs["spmap"] >> spmap_template; ASSERT_TRUE(!rgba.empty() && !spmap_template.empty()); PRINT_PARAM(devInfo); cv::Mat rmap_filtered; cv::Mat rmap; cv::Mat spmap; ASSERT_NO_THROW( cv::gpu::GpuMat d_rmap_filtered; cv::gpu::meanShiftFiltering(cv::gpu::GpuMat(rgba), d_rmap_filtered, spatialRad, colorRad); cv::gpu::GpuMat d_rmap; cv::gpu::GpuMat d_spmap; cv::gpu::meanShiftProc(cv::gpu::GpuMat(rgba), d_rmap, d_spmap, spatialRad, colorRad); d_rmap_filtered.download(rmap_filtered); d_rmap.download(rmap); d_spmap.download(spmap); ); ASSERT_EQ(CV_8UC4, rmap.type()); EXPECT_MAT_NEAR(rmap_filtered, rmap, 0.0); EXPECT_MAT_NEAR(spmap_template, spmap, 0.0); } INSTANTIATE_TEST_CASE_P(ImgProc, MeanShift, testing::ValuesIn(devices())); struct MeanShiftSegmentation : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int minsize; cv::Mat rgba; cv::Mat dst_gold; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); minsize = std::tr1::get<1>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); cv::Mat img = readImage("meanshift/cones.png"); ASSERT_FALSE(img.empty()); cv::cvtColor(img, rgba, CV_BGR2BGRA); std::ostringstream path; path << "meanshift/cones_segmented_sp10_sr10_minsize" << minsize; if (supportFeature(devInfo, cv::gpu::FEATURE_SET_COMPUTE_20)) path << ".png"; else path << "_CC1X.png"; dst_gold = readImage(path.str()); ASSERT_FALSE(dst_gold.empty()); } }; TEST_P(MeanShiftSegmentation, Regression) { PRINT_PARAM(devInfo); PRINT_PARAM(minsize); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::meanShiftSegmentation(cv::gpu::GpuMat(rgba), dst, 10, 10, minsize); ); cv::Mat dst_rgb; cv::cvtColor(dst, dst_rgb, CV_BGRA2BGR); EXPECT_MAT_SIMILAR(dst_gold, dst_rgb, 1e-3); } INSTANTIATE_TEST_CASE_P(ImgProc, MeanShiftSegmentation, testing::Combine( testing::ValuesIn(devices()), testing::Values(0, 4, 20, 84, 340, 1364))); //////////////////////////////////////////////////////////////////////////////// // matchTemplate static const char* matchTemplateMethods[] = {"SQDIFF", "SQDIFF_NORMED", "CCORR", "CCORR_NORMED", "CCOEFF", "CCOEFF_NORMED"}; struct MatchTemplate8U : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int cn; int method; int n, m, h, w; cv::Mat image, templ; cv::Mat dst_gold; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); cn = std::tr1::get<1>(GetParam()); method = std::tr1::get<2>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); n = rng.uniform(30, 100); m = rng.uniform(30, 100); h = rng.uniform(5, n - 1); w = rng.uniform(5, m - 1); image = cvtest::randomMat(rng, cv::Size(m, n), CV_MAKETYPE(CV_8U, cn), 1.0, 10.0, false); templ = cvtest::randomMat(rng, cv::Size(w, h), CV_MAKETYPE(CV_8U, cn), 1.0, 10.0, false); cv::matchTemplate(image, templ, dst_gold, method); } }; TEST_P(MatchTemplate8U, Regression) { const char* matchTemplateMethodStr = matchTemplateMethods[method]; PRINT_PARAM(devInfo); PRINT_PARAM(cn); PRINT_PARAM(matchTemplateMethodStr); PRINT_PARAM(n); PRINT_PARAM(m); PRINT_PARAM(h); PRINT_PARAM(w); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat dev_dst; cv::gpu::matchTemplate(cv::gpu::GpuMat(image), cv::gpu::GpuMat(templ), dev_dst, method); dev_dst.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 5 * h * w * 1e-4); } INSTANTIATE_TEST_CASE_P(ImgProc, MatchTemplate8U, testing::Combine( testing::ValuesIn(devices()), testing::Range(1, 5), testing::Values((int)CV_TM_SQDIFF, (int)CV_TM_SQDIFF_NORMED, (int)CV_TM_CCORR, (int)CV_TM_CCORR_NORMED, (int)CV_TM_CCOEFF, (int)CV_TM_CCOEFF_NORMED))); struct MatchTemplate32F : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int cn; int method; int n, m, h, w; cv::Mat image, templ; cv::Mat dst_gold; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); cn = std::tr1::get<1>(GetParam()); method = std::tr1::get<2>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); n = rng.uniform(30, 100); m = rng.uniform(30, 100); h = rng.uniform(5, n - 1); w = rng.uniform(5, m - 1); image = cvtest::randomMat(rng, cv::Size(m, n), CV_MAKETYPE(CV_32F, cn), 0.001, 1.0, false); templ = cvtest::randomMat(rng, cv::Size(w, h), CV_MAKETYPE(CV_32F, cn), 0.001, 1.0, false); cv::matchTemplate(image, templ, dst_gold, method); } }; TEST_P(MatchTemplate32F, Regression) { const char* matchTemplateMethodStr = matchTemplateMethods[method]; PRINT_PARAM(devInfo); PRINT_PARAM(cn); PRINT_PARAM(matchTemplateMethodStr); PRINT_PARAM(n); PRINT_PARAM(m); PRINT_PARAM(h); PRINT_PARAM(w); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat dev_dst; cv::gpu::matchTemplate(cv::gpu::GpuMat(image), cv::gpu::GpuMat(templ), dev_dst, method); dev_dst.download(dst); ); EXPECT_MAT_NEAR(dst_gold, dst, 0.25 * h * w * 1e-4); } INSTANTIATE_TEST_CASE_P(ImgProc, MatchTemplate32F, testing::Combine( testing::ValuesIn(devices()), testing::Range(1, 5), testing::Values((int)CV_TM_SQDIFF, (int)CV_TM_CCORR))); struct MatchTemplate : testing::TestWithParam< std::tr1::tuple > { cv::Mat image; cv::Mat pattern; cv::Point maxLocGold; cv::gpu::DeviceInfo devInfo; int method; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); method = std::tr1::get<1>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); image = readImage("matchtemplate/black.png"); ASSERT_FALSE(image.empty()); pattern = readImage("matchtemplate/cat.png"); ASSERT_FALSE(pattern.empty()); maxLocGold = cv::Point(284, 12); } }; TEST_P(MatchTemplate, FindPatternInBlack) { const char* matchTemplateMethodStr = matchTemplateMethods[method]; PRINT_PARAM(devInfo); PRINT_PARAM(matchTemplateMethodStr); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat dev_dst; cv::gpu::matchTemplate(cv::gpu::GpuMat(image), cv::gpu::GpuMat(pattern), dev_dst, method); dev_dst.download(dst); ); double maxValue; cv::Point maxLoc; cv::minMaxLoc(dst, NULL, &maxValue, NULL, &maxLoc); ASSERT_EQ(maxLocGold, maxLoc); } INSTANTIATE_TEST_CASE_P(ImgProc, MatchTemplate, testing::Combine( testing::ValuesIn(devices()), testing::Values((int)CV_TM_CCOEFF_NORMED, (int)CV_TM_CCORR_NORMED))); //////////////////////////////////////////////////////////////////////////// // MulSpectrums struct MulSpectrums : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int flag; cv::Mat a, b; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); flag = std::tr1::get<1>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); a = cvtest::randomMat(rng, cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)), CV_32FC2, 0.0, 10.0, false); b = cvtest::randomMat(rng, a.size(), CV_32FC2, 0.0, 10.0, false); } }; TEST_P(MulSpectrums, Simple) { PRINT_PARAM(devInfo); PRINT_PARAM(flag); cv::Mat c_gold; cv::mulSpectrums(a, b, c_gold, flag, false); cv::Mat c; ASSERT_NO_THROW( cv::gpu::GpuMat d_c; cv::gpu::mulSpectrums(cv::gpu::GpuMat(a), cv::gpu::GpuMat(b), d_c, flag, false); d_c.download(c); ); EXPECT_MAT_NEAR(c_gold, c, 1e-4); } TEST_P(MulSpectrums, Scaled) { PRINT_PARAM(devInfo); PRINT_PARAM(flag); float scale = 1.f / a.size().area(); cv::Mat c_gold; cv::mulSpectrums(a, b, c_gold, flag, false); c_gold.convertTo(c_gold, c_gold.type(), scale); cv::Mat c; ASSERT_NO_THROW( cv::gpu::GpuMat d_c; cv::gpu::mulAndScaleSpectrums(cv::gpu::GpuMat(a), cv::gpu::GpuMat(b), d_c, flag, scale, false); d_c.download(c); ); EXPECT_MAT_NEAR(c_gold, c, 1e-4); } INSTANTIATE_TEST_CASE_P(ImgProc, MulSpectrums, testing::Combine( testing::ValuesIn(devices()), testing::Values(0, (int)cv::DFT_ROWS))); //////////////////////////////////////////////////////////////////////////// // Dft struct Dft : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); } }; static void testC2C(const std::string& hint, int cols, int rows, int flags, bool inplace) { PRINT_PARAM(hint); PRINT_PARAM(cols); PRINT_PARAM(rows); PRINT_PARAM(flags); PRINT_PARAM(inplace); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); cv::Mat a = cvtest::randomMat(rng, cv::Size(cols, rows), CV_32FC2, 0.0, 10.0, false); cv::Mat b_gold; cv::dft(a, b_gold, flags); cv::gpu::GpuMat d_b; cv::gpu::GpuMat d_b_data; if (inplace) { d_b_data.create(1, a.size().area(), CV_32FC2); d_b = cv::gpu::GpuMat(a.rows, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize()); } cv::gpu::dft(cv::gpu::GpuMat(a), d_b, cv::Size(cols, rows), flags); EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr()); ASSERT_EQ(CV_32F, d_b.depth()); ASSERT_EQ(2, d_b.channels()); EXPECT_MAT_NEAR(b_gold, d_b, rows * cols * 1e-4); } TEST_P(Dft, C2C) { PRINT_PARAM(devInfo); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); int cols = 2 + rng.next() % 100, rows = 2 + rng.next() % 100; ASSERT_NO_THROW( for (int i = 0; i < 2; ++i) { bool inplace = i != 0; testC2C("no flags", cols, rows, 0, inplace); testC2C("no flags 0 1", cols, rows + 1, 0, inplace); testC2C("no flags 1 0", cols, rows + 1, 0, inplace); testC2C("no flags 1 1", cols + 1, rows, 0, inplace); testC2C("DFT_INVERSE", cols, rows, cv::DFT_INVERSE, inplace); testC2C("DFT_ROWS", cols, rows, cv::DFT_ROWS, inplace); testC2C("single col", 1, rows, 0, inplace); testC2C("single row", cols, 1, 0, inplace); testC2C("single col inversed", 1, rows, cv::DFT_INVERSE, inplace); testC2C("single row inversed", cols, 1, cv::DFT_INVERSE, inplace); testC2C("single row DFT_ROWS", cols, 1, cv::DFT_ROWS, inplace); testC2C("size 1 2", 1, 2, 0, inplace); testC2C("size 2 1", 2, 1, 0, inplace); } ); } static void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace) { PRINT_PARAM(hint); PRINT_PARAM(cols); PRINT_PARAM(rows); PRINT_PARAM(inplace); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); cv::Mat a = cvtest::randomMat(rng, cv::Size(cols, rows), CV_32FC1, 0.0, 10.0, false); cv::gpu::GpuMat d_b, d_c; cv::gpu::GpuMat d_b_data, d_c_data; if (inplace) { if (a.cols == 1) { d_b_data.create(1, (a.rows / 2 + 1) * a.cols, CV_32FC2); d_b = cv::gpu::GpuMat(a.rows / 2 + 1, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize()); } else { d_b_data.create(1, a.rows * (a.cols / 2 + 1), CV_32FC2); d_b = cv::gpu::GpuMat(a.rows, a.cols / 2 + 1, CV_32FC2, d_b_data.ptr(), (a.cols / 2 + 1) * d_b_data.elemSize()); } d_c_data.create(1, a.size().area(), CV_32F); d_c = cv::gpu::GpuMat(a.rows, a.cols, CV_32F, d_c_data.ptr(), a.cols * d_c_data.elemSize()); } cv::gpu::dft(cv::gpu::GpuMat(a), d_b, cv::Size(cols, rows), 0); cv::gpu::dft(d_b, d_c, cv::Size(cols, rows), cv::DFT_REAL_OUTPUT | cv::DFT_SCALE); EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr()); EXPECT_TRUE(!inplace || d_c.ptr() == d_c_data.ptr()); ASSERT_EQ(CV_32F, d_c.depth()); ASSERT_EQ(1, d_c.channels()); cv::Mat c(d_c); EXPECT_MAT_NEAR(a, c, rows * cols * 1e-5); } TEST_P(Dft, R2CThenC2R) { PRINT_PARAM(devInfo); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); int cols = 2 + rng.next() % 100, rows = 2 + rng.next() % 100; ASSERT_NO_THROW( testR2CThenC2R("sanity", cols, rows, false); testR2CThenC2R("sanity 0 1", cols, rows + 1, false); testR2CThenC2R("sanity 1 0", cols + 1, rows, false); testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, false); testR2CThenC2R("single col", 1, rows, false); testR2CThenC2R("single col 1", 1, rows + 1, false); testR2CThenC2R("single row", cols, 1, false); testR2CThenC2R("single row 1", cols + 1, 1, false); testR2CThenC2R("sanity", cols, rows, true); testR2CThenC2R("sanity 0 1", cols, rows + 1, true); testR2CThenC2R("sanity 1 0", cols + 1, rows, true); testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, true); testR2CThenC2R("single row", cols, 1, true); testR2CThenC2R("single row 1", cols + 1, 1, true); ); } INSTANTIATE_TEST_CASE_P(ImgProc, Dft, testing::ValuesIn(devices())); //////////////////////////////////////////////////////////////////////////// // blend template static void blendLinearGold(const cv::Mat& img1, const cv::Mat& img2, const cv::Mat& weights1, const cv::Mat& weights2, cv::Mat& result_gold) { result_gold.create(img1.size(), img1.type()); int cn = img1.channels(); for (int y = 0; y < img1.rows; ++y) { const float* weights1_row = weights1.ptr(y); const float* weights2_row = weights2.ptr(y); const T* img1_row = img1.ptr(y); const T* img2_row = img2.ptr(y); T* result_gold_row = result_gold.ptr(y); for (int x = 0; x < img1.cols * cn; ++x) { float w1 = weights1_row[x / cn]; float w2 = weights2_row[x / cn]; result_gold_row[x] = static_cast((img1_row[x] * w1 + img2_row[x] * w2) / (w1 + w2 + 1e-5f)); } } } struct Blend : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int depth; int cn; int type; cv::Size size; cv::Mat img1; cv::Mat img2; cv::Mat weights1; cv::Mat weights2; cv::Mat result_gold; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); depth = std::tr1::get<1>(GetParam()); cn = std::tr1::get<2>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); type = CV_MAKETYPE(depth, cn); cv::RNG& rng = cvtest::TS::ptr()->get_rng(); size = cv::Size(200 + cvtest::randInt(rng) % 1000, 200 + cvtest::randInt(rng) % 1000); img1 = cvtest::randomMat(rng, size, type, 0.0, depth == CV_8U ? 255.0 : 1.0, false); img2 = cvtest::randomMat(rng, size, type, 0.0, depth == CV_8U ? 255.0 : 1.0, false); weights1 = cvtest::randomMat(rng, size, CV_32F, 0, 1, false); weights2 = cvtest::randomMat(rng, size, CV_32F, 0, 1, false); if (depth == CV_8U) blendLinearGold(img1, img2, weights1, weights2, result_gold); else blendLinearGold(img1, img2, weights1, weights2, result_gold); } }; TEST_P(Blend, Accuracy) { PRINT_PARAM(devInfo); PRINT_TYPE(type); PRINT_PARAM(size); cv::Mat result; ASSERT_NO_THROW( cv::gpu::GpuMat d_result; cv::gpu::blendLinear(cv::gpu::GpuMat(img1), cv::gpu::GpuMat(img2), cv::gpu::GpuMat(weights1), cv::gpu::GpuMat(weights2), d_result); d_result.download(result); ); EXPECT_MAT_NEAR(result_gold, result, depth == CV_8U ? 1.0 : 1e-5); } INSTANTIATE_TEST_CASE_P(ImgProc, Blend, testing::Combine( testing::ValuesIn(devices()), testing::Values(CV_8U, CV_32F), testing::Range(1, 5))); //////////////////////////////////////////////////////// // pyrDown struct PyrDown : testing::TestWithParam { cv::gpu::DeviceInfo devInfo; cv::Mat src; cv::Mat dst_gold; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); cv::Mat img = readImage("stereobm/aloe-L.png"); ASSERT_FALSE(img.empty()); img.convertTo(src, CV_16S); cv::pyrDown(src, dst_gold); } }; TEST_P(PyrDown, Accuracy) { PRINT_PARAM(devInfo); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat d_dst; cv::gpu::pyrDown(cv::gpu::GpuMat(src), d_dst); d_dst.download(dst); ); ASSERT_EQ(dst_gold.cols, dst.cols); ASSERT_EQ(dst_gold.rows, dst.rows); ASSERT_EQ(dst_gold.type(), dst.type()); double err = cvtest::crossCorr(dst_gold, dst) / (cv::norm(dst_gold,cv::NORM_L2)*cv::norm(dst,cv::NORM_L2)); ASSERT_NEAR(err, 1., 1e-2); } INSTANTIATE_TEST_CASE_P(ImgProc, PyrDown, testing::ValuesIn(devices())); //////////////////////////////////////////////////////// // pyrUp struct PyrUp: testing::TestWithParam { cv::gpu::DeviceInfo devInfo; cv::Mat src; cv::Mat dst_gold; virtual void SetUp() { devInfo = GetParam(); cv::gpu::setDevice(devInfo.deviceID()); cv::Mat img = readImage("stereobm/aloe-L.png"); ASSERT_FALSE(img.empty()); img.convertTo(src, CV_16S); cv::pyrUp(src, dst_gold); } }; TEST_P(PyrUp, Accuracy) { PRINT_PARAM(devInfo); cv::Mat dst; ASSERT_NO_THROW( cv::gpu::GpuMat d_dst; cv::gpu::pyrUp(cv::gpu::GpuMat(src), d_dst); d_dst.download(dst); ); ASSERT_EQ(dst_gold.cols, dst.cols); ASSERT_EQ(dst_gold.rows, dst.rows); ASSERT_EQ(dst_gold.type(), dst.type()); double err = cvtest::crossCorr(dst_gold, dst) / (cv::norm(dst_gold,cv::NORM_L2)*cv::norm(dst,cv::NORM_L2)); ASSERT_NEAR(err, 1., 1e-2); } INSTANTIATE_TEST_CASE_P(ImgProc, PyrUp, testing::ValuesIn(devices())); //////////////////////////////////////////////////////// // Canny struct Canny : testing::TestWithParam< std::tr1::tuple > { cv::gpu::DeviceInfo devInfo; int apperture_size; bool L2gradient; cv::Mat img; double low_thresh; double high_thresh; cv::Mat edges_gold; virtual void SetUp() { devInfo = std::tr1::get<0>(GetParam()); apperture_size = std::tr1::get<1>(GetParam()); L2gradient = std::tr1::get<2>(GetParam()); cv::gpu::setDevice(devInfo.deviceID()); img = readImage("stereobm/aloe-L.png", CV_LOAD_IMAGE_GRAYSCALE); ASSERT_FALSE(img.empty()); low_thresh = 50.0; high_thresh = 100.0; cv::Canny(img, edges_gold, low_thresh, high_thresh, apperture_size, L2gradient); } }; TEST_P(Canny, Accuracy) { PRINT_PARAM(devInfo); PRINT_PARAM(apperture_size); PRINT_PARAM(L2gradient); cv::Mat edges; ASSERT_NO_THROW( cv::gpu::GpuMat d_edges; cv::gpu::Canny(cv::gpu::GpuMat(img), d_edges, low_thresh, high_thresh, apperture_size, L2gradient); d_edges.download(edges); ); EXPECT_MAT_SIMILAR(edges_gold, edges, 1.0); } INSTANTIATE_TEST_CASE_P(ImgProc, Canny, testing::Combine( testing::ValuesIn(devices()), testing::Values(3, 5), testing::Values(false, true))); #endif // HAVE_CUDA