/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/imgproc/imgproc_c.h" #include "opencv2/calib3d/calib3d_c.h" #include #include using namespace cv; using namespace std; static void icvGetQuadrangleHypotheses(const std::vector > & contours, const std::vector< cv::Vec4i > & hierarchy, std::vector >& quads, int class_id) { const float min_aspect_ratio = 0.3f; const float max_aspect_ratio = 3.0f; const float min_box_size = 10.0f; typedef std::vector< std::vector< cv::Point > >::const_iterator iter_t; iter_t i; for (i = contours.begin(); i != contours.end(); ++i) { const iter_t::difference_type idx = i - contours.begin(); if (hierarchy.at(idx)[3] != -1) continue; // skip holes const std::vector< cv::Point > & c = *i; cv::RotatedRect box = cv::minAreaRect(c); float box_size = MAX(box.size.width, box.size.height); if(box_size < min_box_size) { continue; } float aspect_ratio = box.size.width/MAX(box.size.height, 1); if(aspect_ratio < min_aspect_ratio || aspect_ratio > max_aspect_ratio) { continue; } quads.push_back(std::pair(box_size, class_id)); } } static void countClasses(const std::vector >& pairs, size_t idx1, size_t idx2, std::vector& counts) { counts.assign(2, 0); for(size_t i = idx1; i != idx2; i++) { counts[pairs[i].second]++; } } inline bool less_pred(const std::pair& p1, const std::pair& p2) { return p1.first < p2.first; } static void fillQuads(Mat & white, Mat & black, double white_thresh, double black_thresh, vector > & quads) { Mat thresh; { vector< vector > contours; vector< Vec4i > hierarchy; threshold(white, thresh, white_thresh, 255, THRESH_BINARY); findContours(thresh, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE); icvGetQuadrangleHypotheses(contours, hierarchy, quads, 1); } { vector< vector > contours; vector< Vec4i > hierarchy; threshold(black, thresh, black_thresh, 255, THRESH_BINARY_INV); findContours(thresh, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE); icvGetQuadrangleHypotheses(contours, hierarchy, quads, 0); } } static bool checkQuads(vector > & quads, const cv::Size & size) { const size_t min_quads_count = size.width*size.height/2; std::sort(quads.begin(), quads.end(), less_pred); // now check if there are many hypotheses with similar sizes // do this by floodfill-style algorithm const float size_rel_dev = 0.4f; for(size_t i = 0; i < quads.size(); i++) { size_t j = i + 1; for(; j < quads.size(); j++) { if(quads[j].first/quads[i].first > 1.0f + size_rel_dev) { break; } } if(j + 1 > min_quads_count + i) { // check the number of black and white squares std::vector counts; countClasses(quads, i, j, counts); const int black_count = cvRound(ceil(size.width/2.0)*ceil(size.height/2.0)); const int white_count = cvRound(floor(size.width/2.0)*floor(size.height/2.0)); if(counts[0] < black_count*0.75 || counts[1] < white_count*0.75) { continue; } return true; } } return false; } // does a fast check if a chessboard is in the input image. This is a workaround to // a problem of cvFindChessboardCorners being slow on images with no chessboard // - src: input image // - size: chessboard size // Returns 1 if a chessboard can be in this image and findChessboardCorners should be called, // 0 if there is no chessboard, -1 in case of error int cvCheckChessboard(IplImage* src, CvSize size) { cv::Mat img = cv::cvarrToMat(src); return checkChessboard(img, size); } int checkChessboard(const cv::Mat & img, const cv::Size & size) { CV_Assert(img.channels() == 1 && img.depth() == CV_8U); const int erosion_count = 1; const float black_level = 20.f; const float white_level = 130.f; const float black_white_gap = 70.f; Mat white; Mat black; erode(img, white, Mat(), Point(-1, -1), erosion_count); dilate(img, black, Mat(), Point(-1, -1), erosion_count); int result = 0; for(float thresh_level = black_level; thresh_level < white_level && !result; thresh_level += 20.0f) { vector > quads; fillQuads(white, black, thresh_level + black_white_gap, thresh_level, quads); if (checkQuads(quads, size)) result = 1; } return result; } // does a fast check if a chessboard is in the input image. This is a workaround to // a problem of cvFindChessboardCorners being slow on images with no chessboard // - src: input binary image // - size: chessboard size // Returns 1 if a chessboard can be in this image and findChessboardCorners should be called, // 0 if there is no chessboard, -1 in case of error int checkChessboardBinary(const cv::Mat & img, const cv::Size & size) { CV_Assert(img.channels() == 1 && img.depth() == CV_8U); Mat white = img.clone(); Mat black = img.clone(); int result = 0; for ( int erosion_count = 0; erosion_count <= 3; erosion_count++ ) { if ( 1 == result ) break; if ( 0 != erosion_count ) // first iteration keeps original images { erode(white, white, Mat(), Point(-1, -1), 1); dilate(black, black, Mat(), Point(-1, -1), 1); } vector > quads; fillQuads(white, black, 128, 128, quads); if (checkQuads(quads, size)) result = 1; } return result; }