/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Peng Xiao, pengxiao@multicorewareinc.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::ocl; using namespace std; #if !defined (HAVE_OPENCL) void cv::ocl::buildWarpPlaneMaps(Size, Rect, const Mat &, const Mat &, const Mat &, float, oclMat &, oclMat &, Stream &) { throw_nogpu(); } void cv::ocl::buildWarpCylindricalMaps(Size, Rect, const Mat &, const Mat &, float, oclMat &, oclMat &, Stream &) { throw_nogpu(); } void cv::ocl::buildWarpSphericalMaps(Size, Rect, const Mat &, const Mat &, float, oclMat &, oclMat &, Stream &) { throw_nogpu(); } #else namespace cv { namespace ocl { ///////////////////////////OpenCL kernel strings/////////////////////////// extern const char *build_warps; } } ////////////////////////////////////////////////////////////////////////////// // buildWarpPlaneMaps void cv::ocl::buildWarpPlaneMaps(Size /*src_size*/, Rect dst_roi, const Mat &K, const Mat &R, const Mat &T, float scale, oclMat &map_x, oclMat &map_y) { CV_Assert(K.size() == Size(3, 3) && K.type() == CV_32F); CV_Assert(R.size() == Size(3, 3) && R.type() == CV_32F); CV_Assert((T.size() == Size(3, 1) || T.size() == Size(1, 3)) && T.type() == CV_32F && T.isContinuous()); Mat K_Rinv = K * R.t(); CV_Assert(K_Rinv.isContinuous()); Mat KRT_mat(1, 12, CV_32FC1); // 9 + 3 KRT_mat(Range::all(), Range(0, 8)) = K_Rinv.reshape(1, 1); KRT_mat(Range::all(), Range(9, 11)) = T; oclMat KRT_oclMat(KRT_mat); // transfer K_Rinv and T into a single cl_mem map_x.create(dst_roi.size(), CV_32F); map_y.create(dst_roi.size(), CV_32F); int tl_u = dst_roi.tl().x; int tl_v = dst_roi.tl().y; Context *clCxt = Context::getContext(); string kernelName = "buildWarpPlaneMaps"; vector< pair > args; args.push_back( make_pair( sizeof(cl_mem), (void *)&map_x.data)); args.push_back( make_pair( sizeof(cl_mem), (void *)&map_y.data)); args.push_back( make_pair( sizeof(cl_mem), (void *)&KRT_mat.data)); args.push_back( make_pair( sizeof(cl_int), (void *)&tl_u)); args.push_back( make_pair( sizeof(cl_int), (void *)&tl_v)); args.push_back( make_pair( sizeof(cl_int), (void *)&map_x.cols)); args.push_back( make_pair( sizeof(cl_int), (void *)&map_x.rows)); args.push_back( make_pair( sizeof(cl_int), (void *)&map_x.step)); args.push_back( make_pair( sizeof(cl_int), (void *)&map_y.step)); args.push_back( make_pair( sizeof(cl_float), (void *)&scale)); size_t globalThreads[3] = {map_x.cols, map_x.rows, 1}; size_t localThreads[3] = {32, 8, 1}; openCLExecuteKernel(clCxt, &build_warps, kernelName, globalThreads, localThreads, args, -1, -1); } ////////////////////////////////////////////////////////////////////////////// // buildWarpCylyndricalMaps void cv::ocl::buildWarpCylindricalMaps(Size /*src_size*/, Rect dst_roi, const Mat &K, const Mat &R, float scale, oclMat &map_x, oclMat &map_y) { CV_Assert(K.size() == Size(3, 3) && K.type() == CV_32F); CV_Assert(R.size() == Size(3, 3) && R.type() == CV_32F); Mat K_Rinv = K * R.t(); CV_Assert(K_Rinv.isContinuous()); oclMat KR_oclMat(K_Rinv.reshape(1, 1)); map_x.create(dst_roi.size(), CV_32F); map_y.create(dst_roi.size(), CV_32F); int tl_u = dst_roi.tl().x; int tl_v = dst_roi.tl().y; Context *clCxt = Context::getContext(); string kernelName = "buildWarpCylindricalMaps"; vector< pair > args; args.push_back( make_pair( sizeof(cl_mem), (void *)&map_x.data)); args.push_back( make_pair( sizeof(cl_mem), (void *)&map_y.data)); args.push_back( make_pair( sizeof(cl_mem), (void *)&KR_oclMat.data)); args.push_back( make_pair( sizeof(cl_int), (void *)&tl_u)); args.push_back( make_pair( sizeof(cl_int), (void *)&tl_v)); args.push_back( make_pair( sizeof(cl_int), (void *)&map_x.cols)); args.push_back( make_pair( sizeof(cl_int), (void *)&map_x.rows)); args.push_back( make_pair( sizeof(cl_int), (void *)&map_x.step)); args.push_back( make_pair( sizeof(cl_int), (void *)&map_y.step)); args.push_back( make_pair( sizeof(cl_float), (void *)&scale)); size_t globalThreads[3] = {map_x.cols, map_x.rows, 1}; size_t localThreads[3] = {32, 8, 1}; openCLExecuteKernel(clCxt, &build_warps, kernelName, globalThreads, localThreads, args, -1, -1); } ////////////////////////////////////////////////////////////////////////////// // buildWarpSphericalMaps void cv::ocl::buildWarpSphericalMaps(Size /*src_size*/, Rect dst_roi, const Mat &K, const Mat &R, float scale, oclMat &map_x, oclMat &map_y) { CV_Assert(K.size() == Size(3, 3) && K.type() == CV_32F); CV_Assert(R.size() == Size(3, 3) && R.type() == CV_32F); Mat K_Rinv = K * R.t(); CV_Assert(K_Rinv.isContinuous()); oclMat KR_oclMat(K_Rinv.reshape(1, 1)); // transfer K_Rinv, R_Kinv into a single cl_mem map_x.create(dst_roi.size(), CV_32F); map_y.create(dst_roi.size(), CV_32F); int tl_u = dst_roi.tl().x; int tl_v = dst_roi.tl().y; Context *clCxt = Context::getContext(); string kernelName = "buildWarpSphericalMaps"; vector< pair > args; args.push_back( make_pair( sizeof(cl_mem), (void *)&map_x.data)); args.push_back( make_pair( sizeof(cl_mem), (void *)&map_y.data)); args.push_back( make_pair( sizeof(cl_mem), (void *)&KR_oclMat.data)); args.push_back( make_pair( sizeof(cl_int), (void *)&tl_u)); args.push_back( make_pair( sizeof(cl_int), (void *)&tl_v)); args.push_back( make_pair( sizeof(cl_int), (void *)&map_x.cols)); args.push_back( make_pair( sizeof(cl_int), (void *)&map_x.rows)); args.push_back( make_pair( sizeof(cl_int), (void *)&map_x.step)); args.push_back( make_pair( sizeof(cl_int), (void *)&map_y.step)); args.push_back( make_pair( sizeof(cl_float), (void *)&scale)); size_t globalThreads[3] = {map_x.cols, map_x.rows, 1}; size_t localThreads[3] = {32, 8, 1}; openCLExecuteKernel(clCxt, &build_warps, kernelName, globalThreads, localThreads, args, -1, -1); } void cv::ocl::buildWarpAffineMaps(const Mat &M, bool inverse, Size dsize, oclMat &xmap, oclMat &ymap) { CV_Assert(M.rows == 2 && M.cols == 3); xmap.create(dsize, CV_32FC1); ymap.create(dsize, CV_32FC1); float coeffs[2 * 3]; Mat coeffsMat(2, 3, CV_32F, (void *)coeffs); if (inverse) M.convertTo(coeffsMat, coeffsMat.type()); else { cv::Mat iM; invertAffineTransform(M, iM); iM.convertTo(coeffsMat, coeffsMat.type()); } oclMat coeffsOclMat(coeffsMat.reshape(1, 1)); Context *clCxt = Context::getContext(); string kernelName = "buildWarpAffineMaps"; vector< pair > args; args.push_back( make_pair( sizeof(cl_mem), (void *)&xmap.data)); args.push_back( make_pair( sizeof(cl_mem), (void *)&ymap.data)); args.push_back( make_pair( sizeof(cl_mem), (void *)&coeffsOclMat.data)); args.push_back( make_pair( sizeof(cl_int), (void *)&xmap.cols)); args.push_back( make_pair( sizeof(cl_int), (void *)&xmap.rows)); args.push_back( make_pair( sizeof(cl_int), (void *)&xmap.step)); args.push_back( make_pair( sizeof(cl_int), (void *)&ymap.step)); size_t globalThreads[3] = {xmap.cols, xmap.rows, 1}; size_t localThreads[3] = {32, 8, 1}; openCLExecuteKernel(clCxt, &build_warps, kernelName, globalThreads, localThreads, args, -1, -1); } void cv::ocl::buildWarpPerspectiveMaps(const Mat &M, bool inverse, Size dsize, oclMat &xmap, oclMat &ymap) { CV_Assert(M.rows == 3 && M.cols == 3); xmap.create(dsize, CV_32FC1); ymap.create(dsize, CV_32FC1); float coeffs[3 * 3]; Mat coeffsMat(3, 3, CV_32F, (void *)coeffs); if (inverse) M.convertTo(coeffsMat, coeffsMat.type()); else { cv::Mat iM; invert(M, iM); iM.convertTo(coeffsMat, coeffsMat.type()); } oclMat coeffsOclMat(coeffsMat.reshape(1, 1)); Context *clCxt = Context::getContext(); string kernelName = "buildWarpPerspectiveMaps"; vector< pair > args; args.push_back( make_pair( sizeof(cl_mem), (void *)&xmap.data)); args.push_back( make_pair( sizeof(cl_mem), (void *)&ymap.data)); args.push_back( make_pair( sizeof(cl_mem), (void *)&coeffsOclMat.data)); args.push_back( make_pair( sizeof(cl_int), (void *)&xmap.cols)); args.push_back( make_pair( sizeof(cl_int), (void *)&xmap.rows)); args.push_back( make_pair( sizeof(cl_int), (void *)&xmap.step)); args.push_back( make_pair( sizeof(cl_int), (void *)&ymap.step)); size_t globalThreads[3] = {xmap.cols, xmap.rows, 1}; size_t localThreads[3] = {32, 8, 1}; openCLExecuteKernel(clCxt, &build_warps, kernelName, globalThreads, localThreads, args, -1, -1); } #endif // HAVE_OPENCL