/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Guoping Long, longguoping@gmail.com // Niko Li, newlife20080214@gmail.com // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #include "binarycaching.hpp" using namespace cv; using namespace cv::ocl; using namespace std; using std::cout; using std::endl; //#define PRINT_KERNEL_RUN_TIME #define RUN_TIMES 100 //#define AMD_DOUBLE_DIFFER #if !defined (HAVE_OPENCL) namespace cv { namespace ocl { cl_device_id getDevice() { throw_nogpu(); return 0; } void getComputeCapability(cl_device_id, int &major, int &minor) { throw_nogpu(); } void openCLMallocPitch(Context * /*clCxt*/, void ** /*dev_ptr*/, size_t * /*pitch*/, size_t /*widthInBytes*/, size_t /*height*/) { throw_nogpu(); } void openCLMemcpy2D(Context * /*clCxt*/, void * /*dst*/, size_t /*dpitch*/, const void * /*src*/, size_t /*spitch*/, size_t /*width*/, size_t /*height*/, enum openCLMemcpyKind /*kind*/) { throw_nogpu(); } void openCLCopyBuffer2D(Context * /*clCxt*/, void * /*dst*/, size_t /*dpitch*/, const void * /*src*/, size_t /*spitch*/, size_t /*width*/, size_t /*height*/, enum openCLMemcpyKind /*kind*/) { throw_nogpu(); } cl_mem openCLCreateBuffer(Context *, size_t, size_t) { throw_nogpu(); } void openCLReadBuffer(Context *, cl_mem, void *, size_t) { throw_nogpu(); } void openCLFree(void * /*devPtr*/) { throw_nogpu(); } cl_kernel openCLGetKernelFromSource(const Context * /*clCxt*/, const char ** /*fileName*/, string /*kernelName*/) { throw_nogpu(); } void openCLVerifyKernel(const Context * /*clCxt*/, cl_kernel /*kernel*/, size_t * /*blockSize*/, size_t * /*globalThreads*/, size_t * /*localThreads*/) { throw_nogpu(); } cl_mem load_constant(cl_context context, cl_command_queue command_queue, const void *value, const size_t size) { throw_nogpu(); } }//namespace ocl }//namespace cv #else /* !defined (HAVE_OPENCL) */ namespace cv { namespace ocl { /* * The binary caching system to eliminate redundant program source compilation. * Strictly, this is not a cache because we do not implement evictions right now. * We shall add such features to trade-off memory consumption and performance when necessary. */ auto_ptr ProgramCache::programCache; ProgramCache *programCache = NULL; ProgramCache::ProgramCache() { codeCache.clear(); cacheSize = 0; } ProgramCache::~ProgramCache() { releaseProgram(); } cl_program ProgramCache::progLookup(string srcsign) { map::iterator iter; iter = codeCache.find(srcsign); if(iter != codeCache.end()) return iter->second; else return NULL; } void ProgramCache::addProgram(string srcsign , cl_program program) { if(!progLookup(srcsign)) { codeCache.insert(map::value_type(srcsign, program)); } } void ProgramCache::releaseProgram() { map::iterator iter; for(iter = codeCache.begin(); iter != codeCache.end(); iter++) { openCLSafeCall(clReleaseProgram(iter->second)); } codeCache.clear(); cacheSize = 0; } ////////////////////////Common OpenCL specific calls/////////////// //Info::Info() //{ // oclplatform = 0; // oclcontext = 0; // devnum = 0; //} //Info::~Info() //{ // release(); //} //void Info::release() //{ // if(oclplatform) // { // oclplatform = 0; // } // if(oclcontext) // { // openCLSafeCall(clReleaseContext(oclcontext)); // } // devices.empty(); // devName.empty(); //} struct Info::Impl { cl_platform_id oclplatform; std::vector devices; std::vector devName; cl_context oclcontext; cl_command_queue clCmdQueue; int devnum; cl_uint maxDimensions; size_t maxWorkGroupSize; size_t *maxWorkItemSizes; cl_uint maxComputeUnits; char extra_options[512]; int double_support; Impl() { memset(extra_options, 0, 512); } }; inline int divUp(int total, int grain) { return (total + grain - 1) / grain; } int getDevice(std::vector &oclinfo, int devicetype) { cl_device_type _devicetype; switch(devicetype) { case CVCL_DEVICE_TYPE_DEFAULT: _devicetype = CL_DEVICE_TYPE_DEFAULT; break; case CVCL_DEVICE_TYPE_CPU: _devicetype = CL_DEVICE_TYPE_CPU; break; case CVCL_DEVICE_TYPE_GPU: _devicetype = CL_DEVICE_TYPE_GPU; break; case CVCL_DEVICE_TYPE_ACCELERATOR: _devicetype = CL_DEVICE_TYPE_ACCELERATOR; break; case CVCL_DEVICE_TYPE_ALL: _devicetype = CL_DEVICE_TYPE_ALL; break; default: CV_Error(CV_GpuApiCallError, "Unkown device type"); } int devcienums = 0; // Platform info cl_int status = 0; cl_uint numPlatforms; Info ocltmpinfo; openCLSafeCall(clGetPlatformIDs(0, NULL, &numPlatforms)); CV_Assert(numPlatforms > 0); cl_platform_id *platforms = new cl_platform_id[numPlatforms]; openCLSafeCall(clGetPlatformIDs(numPlatforms, platforms, NULL)); char deviceName[256]; for (unsigned i = 0; i < numPlatforms; ++i) { cl_uint numsdev; status = clGetDeviceIDs(platforms[i], devicetype, 0, NULL, &numsdev); if(status != CL_DEVICE_NOT_FOUND) { openCLVerifyCall(status); } if(numsdev > 0) { devcienums += numsdev; cl_device_id *devices = new cl_device_id[numsdev]; openCLSafeCall(clGetDeviceIDs(platforms[i], devicetype, numsdev, devices, NULL)); ocltmpinfo.impl->oclplatform = platforms[i]; for(unsigned j = 0; j < numsdev; j++) { ocltmpinfo.impl->devices.push_back(devices[j]); openCLSafeCall(clGetDeviceInfo(devices[j], CL_DEVICE_NAME, 256, deviceName, NULL)); ocltmpinfo.impl->devName.push_back(std::string(deviceName)); ocltmpinfo.DeviceName.push_back(std::string(deviceName)); } delete[] devices; oclinfo.push_back(ocltmpinfo); ocltmpinfo.release(); } } delete[] platforms; if(devcienums > 0) { setDevice(oclinfo[0]); } return devcienums; } void setDevice(Info &oclinfo, int devnum) { CV_Assert(devnum >= 0); cl_int status = 0; cl_context_properties cps[3] = { CL_CONTEXT_PLATFORM, (cl_context_properties)(oclinfo.impl->oclplatform), 0 }; oclinfo.impl->devnum = devnum; oclinfo.impl->oclcontext = clCreateContext(cps, 1, &oclinfo.impl->devices[devnum], NULL, NULL, &status); openCLVerifyCall(status); //create the command queue using the first device of the list oclinfo.impl->clCmdQueue = clCreateCommandQueue(oclinfo.impl->oclcontext, oclinfo.impl->devices[devnum], CL_QUEUE_PROFILING_ENABLE, &status); openCLVerifyCall(status); //get device information openCLSafeCall(clGetDeviceInfo(oclinfo.impl->devices[devnum], CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t), (void *)&oclinfo.impl->maxWorkGroupSize, NULL)); openCLSafeCall(clGetDeviceInfo(oclinfo.impl->devices[devnum], CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS, sizeof(cl_uint), (void *)&oclinfo.impl->maxDimensions, NULL)); oclinfo.impl->maxWorkItemSizes = new size_t[oclinfo.impl->maxDimensions]; openCLSafeCall(clGetDeviceInfo(oclinfo.impl->devices[devnum], CL_DEVICE_MAX_WORK_ITEM_SIZES, sizeof(size_t)*oclinfo.impl->maxDimensions, (void *)oclinfo.impl->maxWorkItemSizes, NULL)); openCLSafeCall(clGetDeviceInfo(oclinfo.impl->devices[devnum], CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(cl_uint), (void *)&oclinfo.impl->maxComputeUnits, NULL)); //initialize extra options for compilation. Currently only fp64 is included. //Assume 4KB is enough to store all possible extensions. const int EXT_LEN = 4096 + 1 ; char extends_set[EXT_LEN]; size_t extends_size; openCLSafeCall(clGetDeviceInfo(oclinfo.impl->devices[devnum], CL_DEVICE_EXTENSIONS, EXT_LEN, (void *)extends_set, &extends_size)); CV_Assert(extends_size < EXT_LEN); extends_set[EXT_LEN - 1] = 0; memset(oclinfo.impl->extra_options, 0, 512); oclinfo.impl->double_support = 0; int fp64_khr = string(extends_set).find("cl_khr_fp64"); if(fp64_khr >= 0 && fp64_khr < EXT_LEN) { sprintf(oclinfo.impl->extra_options , "-D DOUBLE_SUPPORT"); oclinfo.impl -> double_support = 1; } Context::setContext(oclinfo); } void *getoclContext() { return &(Context::getContext()->impl->clContext); } void *getoclCommandQueue() { return &(Context::getContext()->impl->clCmdQueue); } void openCLReadBuffer(Context *clCxt, cl_mem dst_buffer, void *host_buffer, size_t size) { cl_int status; status = clEnqueueReadBuffer(clCxt->impl->clCmdQueue, dst_buffer, CL_TRUE, 0, size, host_buffer, 0, NULL, NULL); openCLVerifyCall(status); } cl_mem openCLCreateBuffer(Context *clCxt, size_t flag , size_t size) { cl_int status; cl_mem buffer = clCreateBuffer(clCxt->impl->clContext, (cl_mem_flags)flag, size, NULL, &status); openCLVerifyCall(status); return buffer; } void openCLMallocPitch(Context *clCxt, void **dev_ptr, size_t *pitch, size_t widthInBytes, size_t height) { cl_int status; *dev_ptr = clCreateBuffer(clCxt->impl->clContext, CL_MEM_READ_WRITE, widthInBytes * height, 0, &status); openCLVerifyCall(status); *pitch = widthInBytes; } void openCLMemcpy2D(Context *clCxt, void *dst, size_t dpitch, const void *src, size_t spitch, size_t width, size_t height, enum openCLMemcpyKind kind, int channels) { size_t buffer_origin[3] = {0, 0, 0}; size_t host_origin[3] = {0, 0, 0}; size_t region[3] = {width, height, 1}; if(kind == clMemcpyHostToDevice) { if(dpitch == width || channels == 3 || height == 1) { openCLSafeCall(clEnqueueWriteBuffer(clCxt->impl->clCmdQueue, (cl_mem)dst, CL_TRUE, 0, width * height, src, 0, NULL, NULL)); } else { openCLSafeCall(clEnqueueWriteBufferRect(clCxt->impl->clCmdQueue, (cl_mem)dst, CL_TRUE, buffer_origin, host_origin, region, dpitch, 0, spitch, 0, src, 0, 0, 0)); } } else if(kind == clMemcpyDeviceToHost) { if(spitch == width || channels == 3 || height == 1) { openCLSafeCall(clEnqueueReadBuffer(clCxt->impl->clCmdQueue, (cl_mem)src, CL_TRUE, 0, width * height, dst, 0, NULL, NULL)); } else { openCLSafeCall(clEnqueueReadBufferRect(clCxt->impl->clCmdQueue, (cl_mem)src, CL_TRUE, buffer_origin, host_origin, region, spitch, 0, dpitch, 0, dst, 0, 0, 0)); } } } void openCLCopyBuffer2D(Context *clCxt, void *dst, size_t dpitch, int dst_offset, const void *src, size_t spitch, size_t width, size_t height, int src_offset) { size_t src_origin[3] = {src_offset % spitch, src_offset / spitch, 0}; size_t dst_origin[3] = {dst_offset % dpitch, dst_offset / dpitch, 0}; size_t region[3] = {width, height, 1}; openCLSafeCall(clEnqueueCopyBufferRect(clCxt->impl->clCmdQueue, (cl_mem)src, (cl_mem)dst, src_origin, dst_origin, region, spitch, 0, dpitch, 0, 0, 0, 0)); } void openCLFree(void *devPtr) { openCLSafeCall(clReleaseMemObject((cl_mem)devPtr)); } cl_kernel openCLGetKernelFromSource(const Context *clCxt, const char **source, string kernelName) { return openCLGetKernelFromSource(clCxt, source, kernelName, NULL); } void setBinpath(const char *path) { Context *clcxt = Context::getContext(); clcxt->impl->Binpath = path; } int savetofile(const Context *clcxt, cl_program &program, const char *fileName) { //cl_int status; size_t numDevices = 1; cl_device_id *devices = clcxt->impl->devices; //figure out the sizes of each of the binaries. size_t *binarySizes = (size_t *)malloc( sizeof(size_t) * numDevices ); openCLSafeCall(clGetProgramInfo(program, CL_PROGRAM_BINARY_SIZES, sizeof(size_t) * numDevices, binarySizes, NULL)); size_t i = 0; //copy over all of the generated binaries. char **binaries = (char **)malloc( sizeof(char *) * numDevices ); if(binaries == NULL) { CV_Error(CV_StsNoMem, "Failed to allocate host memory.(binaries)\r\n"); } for(i = 0; i < numDevices; i++) { if(binarySizes[i] != 0) { binaries[i] = (char *)malloc( sizeof(char) * binarySizes[i]); if(binaries[i] == NULL) { CV_Error(CV_StsNoMem, "Failed to allocate host memory.(binaries[i])\r\n"); } } else { binaries[i] = NULL; } } openCLSafeCall(clGetProgramInfo(program, CL_PROGRAM_BINARIES, sizeof(char *) * numDevices, binaries, NULL)); //dump out each binary into its own separate file. for(i = 0; i < numDevices; i++) { if(binarySizes[i] != 0) { char deviceName[1024]; openCLSafeCall(clGetDeviceInfo(devices[i], CL_DEVICE_NAME, sizeof(deviceName), deviceName, NULL)); printf( "%s binary kernel: %s\n", deviceName, fileName); FILE *fp = fopen(fileName, "wb+"); if(fp == NULL) { char *temp = NULL; sprintf(temp, "Failed to load kernel file : %s\r\n", fileName); CV_Error(CV_GpuApiCallError, temp); } else { fwrite(binaries[i], binarySizes[i], 1, fp); free(binaries[i]); fclose(fp); } } else { printf("Skipping %s since there is no binary data to write!\n", fileName); } } free(binarySizes); free(binaries); return 1; } cl_kernel openCLGetKernelFromSource(const Context *clCxt, const char **source, string kernelName, const char *build_options) { cl_kernel kernel; cl_program program ; cl_int status = 0; stringstream src_sign; string srcsign; string filename; CV_Assert(programCache != NULL); if(NULL != build_options) { src_sign << (int64)(*source) << clCxt->impl->clContext << "_" << build_options; } else { src_sign << (int64)(*source) << clCxt->impl->clContext; } srcsign = src_sign.str(); program = NULL; program = programCache->progLookup(srcsign); if(!program) { //config build programs char all_build_options[1024]; memset(all_build_options, 0, 1024); char zeromem[512] = {0}; if(0 != memcmp(clCxt -> impl->extra_options, zeromem, 512)) strcat(all_build_options, clCxt -> impl->extra_options); strcat(all_build_options, " "); if(build_options != NULL) strcat(all_build_options, build_options); if(all_build_options != NULL) { filename = clCxt->impl->Binpath + kernelName + "_" + clCxt->impl->devName + all_build_options + ".clb"; } else { filename = clCxt->impl->Binpath + kernelName + "_" + clCxt->impl->devName + ".clb"; } FILE *fp; fp = fopen(filename.c_str(), "rb"); if(fp == NULL || clCxt->impl->Binpath.size() == 0) //we should genetate a binary file for the first time. { program = clCreateProgramWithSource( clCxt->impl->clContext, 1, source, NULL, &status); openCLVerifyCall(status); status = clBuildProgram(program, 1, &(clCxt->impl->devices[0]), all_build_options, NULL, NULL); if(status == CL_SUCCESS && clCxt->impl->Binpath.size()) savetofile(clCxt, program, filename.c_str()); } else { fseek(fp, 0, SEEK_END); size_t binarySize = ftell(fp); fseek(fp, 0, SEEK_SET); char *binary = new char[binarySize]; fread(binary, binarySize, 1, fp); fclose(fp); cl_int status = 0; program = clCreateProgramWithBinary(clCxt->impl->clContext, 1, &(clCxt->impl->devices[0]), (const size_t *)&binarySize, (const unsigned char **)&binary, NULL, &status); openCLVerifyCall(status); status = clBuildProgram(program, 1, &(clCxt->impl->devices[0]), all_build_options, NULL, NULL); } if(status != CL_SUCCESS) { if(status == CL_BUILD_PROGRAM_FAILURE) { cl_int logStatus; char *buildLog = NULL; size_t buildLogSize = 0; logStatus = clGetProgramBuildInfo(program, clCxt->impl->devices[0], CL_PROGRAM_BUILD_LOG, buildLogSize, buildLog, &buildLogSize); if(logStatus != CL_SUCCESS) cout << "Failed to build the program and get the build info." << endl; buildLog = new char[buildLogSize]; CV_DbgAssert(!!buildLog); memset(buildLog, 0, buildLogSize); openCLSafeCall(clGetProgramBuildInfo(program, clCxt->impl->devices[0], CL_PROGRAM_BUILD_LOG, buildLogSize, buildLog, NULL)); cout << "\n\t\t\tBUILD LOG\n"; cout << buildLog << endl; delete buildLog; } openCLVerifyCall(status); } //Cache the binary for future use if build_options is null if( (programCache->cacheSize += 1) < programCache->MAX_PROG_CACHE_SIZE) programCache->addProgram(srcsign, program); else cout << "Warning: code cache has been full.\n"; } kernel = clCreateKernel(program, kernelName.c_str(), &status); openCLVerifyCall(status); return kernel; } void openCLVerifyKernel(const Context *clCxt, cl_kernel kernel, size_t *localThreads) { size_t kernelWorkGroupSize; openCLSafeCall(clGetKernelWorkGroupInfo(kernel, clCxt->impl->devices[0], CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &kernelWorkGroupSize, 0)); CV_Assert( (localThreads[0] <= clCxt->impl->maxWorkItemSizes[0]) && (localThreads[1] <= clCxt->impl->maxWorkItemSizes[1]) && (localThreads[2] <= clCxt->impl->maxWorkItemSizes[2]) && ((localThreads[0] * localThreads[1] * localThreads[2]) <= kernelWorkGroupSize) && (localThreads[0] * localThreads[1] * localThreads[2]) <= clCxt->impl->maxWorkGroupSize); } #ifdef PRINT_KERNEL_RUN_TIME static double total_execute_time = 0; static double total_kernel_time = 0; #endif void openCLExecuteKernel_(Context *clCxt , const char **source, string kernelName, size_t globalThreads[3], size_t localThreads[3], vector< pair > &args, int channels, int depth, const char *build_options) { //construct kernel name //The rule is functionName_Cn_Dn, C represent Channels, D Represent DataType Depth, n represent an integer number //for exmaple split_C2_D2, represent the split kernel with channels =2 and dataType Depth = 2(Data type is char) stringstream idxStr; if(channels != -1) idxStr << "_C" << channels; if(depth != -1) idxStr << "_D" << depth; kernelName += idxStr.str(); cl_kernel kernel; kernel = openCLGetKernelFromSource(clCxt, source, kernelName, build_options); if ( localThreads != NULL) { globalThreads[0] = divUp(globalThreads[0], localThreads[0]) * localThreads[0]; globalThreads[1] = divUp(globalThreads[1], localThreads[1]) * localThreads[1]; globalThreads[2] = divUp(globalThreads[2], localThreads[2]) * localThreads[2]; //size_t blockSize = localThreads[0] * localThreads[1] * localThreads[2]; cv::ocl::openCLVerifyKernel(clCxt, kernel, localThreads); } for(size_t i = 0; i < args.size(); i ++) openCLSafeCall(clSetKernelArg(kernel, i, args[i].first, args[i].second)); #ifndef PRINT_KERNEL_RUN_TIME openCLSafeCall(clEnqueueNDRangeKernel(clCxt->impl->clCmdQueue, kernel, 3, NULL, globalThreads, localThreads, 0, NULL, NULL)); #else cl_event event = NULL; openCLSafeCall(clEnqueueNDRangeKernel(clCxt->impl->clCmdQueue, kernel, 3, NULL, globalThreads, localThreads, 0, NULL, &event)); cl_ulong start_time, end_time, queue_time; double execute_time = 0; double total_time = 0; openCLSafeCall(clWaitForEvents(1, &event)); openCLSafeCall(clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start_time, 0)); openCLSafeCall(clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end_time, 0)); openCLSafeCall(clGetEventProfilingInfo(event, CL_PROFILING_COMMAND_QUEUED, sizeof(cl_ulong), &queue_time, 0)); execute_time = (double)(end_time - start_time) / (1000 * 1000); total_time = (double)(end_time - queue_time) / (1000 * 1000); // cout << setiosflags(ios::left) << setw(15) << execute_time; // cout << setiosflags(ios::left) << setw(15) << total_time - execute_time; // cout << setiosflags(ios::left) << setw(15) << total_time << endl; total_execute_time += execute_time; total_kernel_time += total_time; clReleaseEvent(event); #endif clFinish(clCxt->impl->clCmdQueue); openCLSafeCall(clReleaseKernel(kernel)); } void openCLExecuteKernel(Context *clCxt , const char **source, string kernelName, size_t globalThreads[3], size_t localThreads[3], vector< pair > &args, int channels, int depth) { openCLExecuteKernel(clCxt, source, kernelName, globalThreads, localThreads, args, channels, depth, NULL); } void openCLExecuteKernel(Context *clCxt , const char **source, string kernelName, size_t globalThreads[3], size_t localThreads[3], vector< pair > &args, int channels, int depth, const char *build_options) { #ifndef PRINT_KERNEL_RUN_TIME openCLExecuteKernel_(clCxt, source, kernelName, globalThreads, localThreads, args, channels, depth, build_options); #else string data_type[] = { "uchar", "char", "ushort", "short", "int", "float", "double"}; cout << endl; cout << "Function Name: " << kernelName; if(depth >= 0) cout << " |data type: " << data_type[depth]; cout << " |channels: " << channels; cout << " |Time Unit: " << "ms" << endl; total_execute_time = 0; total_kernel_time = 0; cout << "-------------------------------------" << endl; cout << setiosflags(ios::left) << setw(15) << "excute time"; cout << setiosflags(ios::left) << setw(15) << "lauch time"; cout << setiosflags(ios::left) << setw(15) << "kernel time" << endl; int i = 0; for(i = 0; i < RUN_TIMES; i++) openCLExecuteKernel_(clCxt, source, kernelName, globalThreads, localThreads, args, channels, depth, build_options); cout << "average kernel excute time: " << total_execute_time / RUN_TIMES << endl; // "ms" << endl; cout << "average kernel total time: " << total_kernel_time / RUN_TIMES << endl; // "ms" << endl; #endif } cl_mem load_constant(cl_context context, cl_command_queue command_queue, const void *value, const size_t size) { int status; cl_mem con_struct; con_struct = clCreateBuffer(context, CL_MEM_READ_ONLY, size, NULL, &status); openCLSafeCall(status); openCLSafeCall(clEnqueueWriteBuffer(command_queue, con_struct, 1, 0, size, value, 0, 0, 0)); return con_struct; } /////////////////////////////OpenCL initialization///////////////// auto_ptr Context::clCxt; int Context::val = 0; Mutex cs; Context *Context::getContext() { if(val == 0) { AutoLock al(cs); if( NULL == clCxt.get()) clCxt.reset(new Context); val = 1; return clCxt.get(); } else { return clCxt.get(); } } void Context::setContext(Info &oclinfo) { Context *clcxt = getContext(); clcxt->impl->clContext = oclinfo.impl->oclcontext; clcxt->impl->clCmdQueue = oclinfo.impl->clCmdQueue; clcxt->impl->devices = &oclinfo.impl->devices[oclinfo.impl->devnum]; clcxt->impl->devName = oclinfo.impl->devName[oclinfo.impl->devnum]; clcxt->impl->maxDimensions = oclinfo.impl->maxDimensions; clcxt->impl->maxWorkGroupSize = oclinfo.impl->maxWorkGroupSize; clcxt->impl->maxWorkItemSizes = oclinfo.impl->maxWorkItemSizes; clcxt->impl->maxComputeUnits = oclinfo.impl->maxComputeUnits; clcxt->impl->double_support = oclinfo.impl->double_support; //extra options to recognize compiler options clcxt->impl->extra_options = oclinfo.impl->extra_options; } Context::Context() { impl = new Impl; //Information of the OpenCL context impl->clContext = NULL; impl->clCmdQueue = NULL; impl->devices = NULL; impl->maxDimensions = 0; impl->maxWorkGroupSize = 0; impl->maxWorkItemSizes = NULL; impl->maxComputeUnits = 0; impl->double_support = 0; //extra options to recognize vendor specific fp64 extensions impl->extra_options = NULL; programCache = ProgramCache::getProgramCache(); } Context::~Context() { delete impl; programCache->releaseProgram(); } Info::Info() { impl = new Impl; impl->oclplatform = 0; impl->oclcontext = 0; impl->clCmdQueue = 0; impl->devnum = 0; impl->maxDimensions = 0; impl->maxWorkGroupSize = 0; impl->maxWorkItemSizes = 0; impl->maxComputeUnits = 0; impl->double_support = 0; //extra_options = 0; } void Info::release() { if(impl->oclplatform) { impl->oclplatform = 0; } if(impl->clCmdQueue) { openCLSafeCall(clReleaseCommandQueue(impl->clCmdQueue)); } ProgramCache::getProgramCache()->releaseProgram(); if(impl->oclcontext) { openCLSafeCall(clReleaseContext(impl->oclcontext)); } if(impl->maxWorkItemSizes) { delete[] impl->maxWorkItemSizes; impl->maxWorkItemSizes = 0; } //if(extra_options) //{ // delete[] extra_options; // extra_options = 0; //} impl->devices.clear(); impl->devName.clear(); DeviceName.clear(); } Info::~Info() { release(); delete impl; } Info &Info::operator = (const Info &m) { impl->oclplatform = m.impl->oclplatform; impl->oclcontext = m.impl->oclcontext; impl->clCmdQueue = m.impl->clCmdQueue; impl->devnum = m.impl->devnum; impl->maxDimensions = m.impl->maxDimensions; impl->maxWorkGroupSize = m.impl->maxWorkGroupSize; impl->maxWorkItemSizes = m.impl->maxWorkItemSizes; impl->maxComputeUnits = m.impl->maxComputeUnits; impl->double_support = m.impl->double_support; memcpy(impl->extra_options, m.impl->extra_options, 512); for(size_t i = 0; i < m.impl->devices.size(); i++) { impl->devices.push_back(m.impl->devices[i]); impl->devName.push_back(m.impl->devName[i]); DeviceName.push_back(m.DeviceName[i]); } return *this; } Info::Info(const Info &m) { impl = new Impl; *this = m; } }//namespace ocl }//namespace cv #endif