#!/usr/bin/env python ''' Digit recognition adjustment. Grid search is used to find the best parameters for SVM and KNearest classifiers. SVM adjustment follows the guidelines given in http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf Usage: digits_adjust.py [--model {svm|knearest}] --model {svm|knearest} - select the classifier (SVM is the default) ''' import numpy as np import cv2 as cv from multiprocessing.pool import ThreadPool from digits import * def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None): n = len(samples) folds = np.array_split(np.arange(n), kfold) def f(i): model = model_class(**params) test_idx = folds[i] train_idx = list(folds) train_idx.pop(i) train_idx = np.hstack(train_idx) train_samples, train_labels = samples[train_idx], labels[train_idx] test_samples, test_labels = samples[test_idx], labels[test_idx] model.train(train_samples, train_labels) resp = model.predict(test_samples) score = (resp != test_labels).mean() print(".", end='') return score if pool is None: scores = list(map(f, range(kfold))) else: scores = pool.map(f, range(kfold)) return np.mean(scores) class App(object): def __init__(self): self._samples, self._labels = self.preprocess() def preprocess(self): digits, labels = load_digits(DIGITS_FN) shuffle = np.random.permutation(len(digits)) digits, labels = digits[shuffle], labels[shuffle] digits2 = list(map(deskew, digits)) samples = preprocess_hog(digits2) return samples, labels def get_dataset(self): return self._samples, self._labels def run_jobs(self, f, jobs): pool = ThreadPool(processes=cv.getNumberOfCPUs()) ires = pool.imap_unordered(f, jobs) return ires def adjust_SVM(self): Cs = np.logspace(0, 10, 15, base=2) gammas = np.logspace(-7, 4, 15, base=2) scores = np.zeros((len(Cs), len(gammas))) scores[:] = np.nan print('adjusting SVM (may take a long time) ...') def f(job): i, j = job samples, labels = self.get_dataset() params = dict(C = Cs[i], gamma=gammas[j]) score = cross_validate(SVM, params, samples, labels) return i, j, score ires = self.run_jobs(f, np.ndindex(*scores.shape)) for count, (i, j, score) in enumerate(ires): scores[i, j] = score print('%d / %d (best error: %.2f %%, last: %.2f %%)' % (count+1, scores.size, np.nanmin(scores)*100, score*100)) print(scores) print('writing score table to "svm_scores.npz"') np.savez('svm_scores.npz', scores=scores, Cs=Cs, gammas=gammas) i, j = np.unravel_index(scores.argmin(), scores.shape) best_params = dict(C = Cs[i], gamma=gammas[j]) print('best params:', best_params) print('best error: %.2f %%' % (scores.min()*100)) return best_params def adjust_KNearest(self): print('adjusting KNearest ...') def f(k): samples, labels = self.get_dataset() err = cross_validate(KNearest, dict(k=k), samples, labels) return k, err best_err, best_k = np.inf, -1 for k, err in self.run_jobs(f, range(1, 9)): if err < best_err: best_err, best_k = err, k print('k = %d, error: %.2f %%' % (k, err*100)) best_params = dict(k=best_k) print('best params:', best_params, 'err: %.2f' % (best_err*100)) return best_params if __name__ == '__main__': import getopt import sys print(__doc__) args, _ = getopt.getopt(sys.argv[1:], '', ['model=']) args = dict(args) args.setdefault('--model', 'svm') args.setdefault('--env', '') if args['--model'] not in ['svm', 'knearest']: print('unknown model "%s"' % args['--model']) sys.exit(1) t = clock() app = App() if args['--model'] == 'knearest': app.adjust_KNearest() else: app.adjust_SVM() print('work time: %f s' % (clock() - t))