/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace std; using namespace cv; using namespace cv::gpu; #if !defined HAVE_CUDA || defined(CUDA_DISABLER) void cv::gpu::calcOpticalFlowBM(const GpuMat&, const GpuMat&, Size, Size, Size, bool, GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::FastOpticalFlowBM::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, int, int, Stream&) { throw_nogpu(); } #else // HAVE_CUDA namespace optflowbm { void calc(PtrStepSzb prev, PtrStepSzb curr, PtrStepSzf velx, PtrStepSzf vely, int2 blockSize, int2 shiftSize, bool usePrevious, int maxX, int maxY, int acceptLevel, int escapeLevel, const short2* ss, int ssCount, cudaStream_t stream); } void cv::gpu::calcOpticalFlowBM(const GpuMat& prev, const GpuMat& curr, Size blockSize, Size shiftSize, Size maxRange, bool usePrevious, GpuMat& velx, GpuMat& vely, GpuMat& buf, Stream& st) { CV_Assert( prev.type() == CV_8UC1 ); CV_Assert( curr.size() == prev.size() && curr.type() == prev.type() ); const Size velSize((prev.cols - blockSize.width + shiftSize.width) / shiftSize.width, (prev.rows - blockSize.height + shiftSize.height) / shiftSize.height); velx.create(velSize, CV_32FC1); vely.create(velSize, CV_32FC1); // scanning scheme coordinates vector ss((2 * maxRange.width + 1) * (2 * maxRange.height + 1)); int ssCount = 0; // Calculate scanning scheme const int minCount = std::min(maxRange.width, maxRange.height); // use spiral search pattern // // 9 10 11 12 // 8 1 2 13 // 7 * 3 14 // 6 5 4 15 //... 20 19 18 17 // for (int i = 0; i < minCount; ++i) { // four cycles along sides int x = -i - 1, y = x; // upper side for (int j = -i; j <= i + 1; ++j, ++ssCount) { ss[ssCount].x = ++x; ss[ssCount].y = y; } // right side for (int j = -i; j <= i + 1; ++j, ++ssCount) { ss[ssCount].x = x; ss[ssCount].y = ++y; } // bottom side for (int j = -i; j <= i + 1; ++j, ++ssCount) { ss[ssCount].x = --x; ss[ssCount].y = y; } // left side for (int j = -i; j <= i + 1; ++j, ++ssCount) { ss[ssCount].x = x; ss[ssCount].y = --y; } } // the rest part if (maxRange.width < maxRange.height) { const int xleft = -minCount; // cycle by neighbor rings for (int i = minCount; i < maxRange.height; ++i) { // two cycles by x int y = -(i + 1); int x = xleft; // upper side for (int j = -maxRange.width; j <= maxRange.width; ++j, ++ssCount, ++x) { ss[ssCount].x = x; ss[ssCount].y = y; } x = xleft; y = -y; // bottom side for (int j = -maxRange.width; j <= maxRange.width; ++j, ++ssCount, ++x) { ss[ssCount].x = x; ss[ssCount].y = y; } } } else if (maxRange.width > maxRange.height) { const int yupper = -minCount; // cycle by neighbor rings for (int i = minCount; i < maxRange.width; ++i) { // two cycles by y int x = -(i + 1); int y = yupper; // left side for (int j = -maxRange.height; j <= maxRange.height; ++j, ++ssCount, ++y) { ss[ssCount].x = x; ss[ssCount].y = y; } y = yupper; x = -x; // right side for (int j = -maxRange.height; j <= maxRange.height; ++j, ++ssCount, ++y) { ss[ssCount].x = x; ss[ssCount].y = y; } } } const cudaStream_t stream = StreamAccessor::getStream(st); ensureSizeIsEnough(1, ssCount, CV_16SC2, buf); if (stream == 0) cudaSafeCall( cudaMemcpy(buf.data, &ss[0], ssCount * sizeof(short2), cudaMemcpyHostToDevice) ); else cudaSafeCall( cudaMemcpyAsync(buf.data, &ss[0], ssCount * sizeof(short2), cudaMemcpyHostToDevice, stream) ); const int maxX = prev.cols - blockSize.width; const int maxY = prev.rows - blockSize.height; const int SMALL_DIFF = 2; const int BIG_DIFF = 128; const int blSize = blockSize.area(); const int acceptLevel = blSize * SMALL_DIFF; const int escapeLevel = blSize * BIG_DIFF; optflowbm::calc(prev, curr, velx, vely, make_int2(blockSize.width, blockSize.height), make_int2(shiftSize.width, shiftSize.height), usePrevious, maxX, maxY, acceptLevel, escapeLevel, buf.ptr(), ssCount, stream); } namespace optflowbm_fast { void get_buffer_size(int src_cols, int src_rows, int search_window, int block_window, int& buffer_cols, int& buffer_rows); template void calc(PtrStepSzb I0, PtrStepSzb I1, PtrStepSzf velx, PtrStepSzf vely, PtrStepi buffer, int search_window, int block_window, cudaStream_t stream); } void cv::gpu::FastOpticalFlowBM::operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, int search_window, int block_window, Stream& stream) { CV_Assert( I0.type() == CV_8UC1 ); CV_Assert( I1.size() == I0.size() && I1.type() == I0.type() ); int border_size = search_window / 2 + block_window / 2; Size esize = I0.size() + Size(border_size, border_size) * 2; ensureSizeIsEnough(esize, I0.type(), extended_I0); ensureSizeIsEnough(esize, I0.type(), extended_I1); copyMakeBorder(I0, extended_I0, border_size, border_size, border_size, border_size, cv::BORDER_DEFAULT, Scalar(), stream); copyMakeBorder(I1, extended_I1, border_size, border_size, border_size, border_size, cv::BORDER_DEFAULT, Scalar(), stream); GpuMat I0_hdr = extended_I0(Rect(Point2i(border_size, border_size), I0.size())); GpuMat I1_hdr = extended_I1(Rect(Point2i(border_size, border_size), I0.size())); int bcols, brows; optflowbm_fast::get_buffer_size(I0.cols, I0.rows, search_window, block_window, bcols, brows); ensureSizeIsEnough(brows, bcols, CV_32SC1, buffer); flowx.create(I0.size(), CV_32FC1); flowy.create(I0.size(), CV_32FC1); optflowbm_fast::calc(I0_hdr, I1_hdr, flowx, flowy, buffer, search_window, block_window, StreamAccessor::getStream(stream)); } #endif // HAVE_CUDA