/* dlarrf.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int dlarrf_(integer *n, doublereal *d__, doublereal *l, doublereal *ld, integer *clstrt, integer *clend, doublereal *w, doublereal *wgap, doublereal *werr, doublereal *spdiam, doublereal * clgapl, doublereal *clgapr, doublereal *pivmin, doublereal *sigma, doublereal *dplus, doublereal *lplus, doublereal *work, integer *info) { /* System generated locals */ integer i__1; doublereal d__1, d__2, d__3; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__; doublereal s, bestshift, smlgrowth, eps, tmp, max1, max2, rrr1, rrr2, znm2, growthbound, fail, fact, oldp; integer indx; doublereal prod; integer ktry; doublereal fail2, avgap, ldmax, rdmax; integer shift; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); logical dorrr1; extern doublereal dlamch_(char *); doublereal ldelta; logical nofail; doublereal mingap, lsigma, rdelta; extern logical disnan_(doublereal *); logical forcer; doublereal rsigma, clwdth; logical sawnan1, sawnan2, tryrrr1; /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* * */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* Given the initial representation L D L^T and its cluster of close */ /* eigenvalues (in a relative measure), W( CLSTRT ), W( CLSTRT+1 ), ... */ /* W( CLEND ), DLARRF finds a new relatively robust representation */ /* L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the */ /* eigenvalues of L(+) D(+) L(+)^T is relatively isolated. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The order of the matrix (subblock, if the matrix splitted). */ /* D (input) DOUBLE PRECISION array, dimension (N) */ /* The N diagonal elements of the diagonal matrix D. */ /* L (input) DOUBLE PRECISION array, dimension (N-1) */ /* The (N-1) subdiagonal elements of the unit bidiagonal */ /* matrix L. */ /* LD (input) DOUBLE PRECISION array, dimension (N-1) */ /* The (N-1) elements L(i)*D(i). */ /* CLSTRT (input) INTEGER */ /* The index of the first eigenvalue in the cluster. */ /* CLEND (input) INTEGER */ /* The index of the last eigenvalue in the cluster. */ /* W (input) DOUBLE PRECISION array, dimension >= (CLEND-CLSTRT+1) */ /* The eigenvalue APPROXIMATIONS of L D L^T in ascending order. */ /* W( CLSTRT ) through W( CLEND ) form the cluster of relatively */ /* close eigenalues. */ /* WGAP (input/output) DOUBLE PRECISION array, dimension >= (CLEND-CLSTRT+1) */ /* The separation from the right neighbor eigenvalue in W. */ /* WERR (input) DOUBLE PRECISION array, dimension >= (CLEND-CLSTRT+1) */ /* WERR contain the semiwidth of the uncertainty */ /* interval of the corresponding eigenvalue APPROXIMATION in W */ /* SPDIAM (input) estimate of the spectral diameter obtained from the */ /* Gerschgorin intervals */ /* CLGAPL, CLGAPR (input) absolute gap on each end of the cluster. */ /* Set by the calling routine to protect against shifts too close */ /* to eigenvalues outside the cluster. */ /* PIVMIN (input) DOUBLE PRECISION */ /* The minimum pivot allowed in the Sturm sequence. */ /* SIGMA (output) DOUBLE PRECISION */ /* The shift used to form L(+) D(+) L(+)^T. */ /* DPLUS (output) DOUBLE PRECISION array, dimension (N) */ /* The N diagonal elements of the diagonal matrix D(+). */ /* LPLUS (output) DOUBLE PRECISION array, dimension (N-1) */ /* The first (N-1) elements of LPLUS contain the subdiagonal */ /* elements of the unit bidiagonal matrix L(+). */ /* WORK (workspace) DOUBLE PRECISION array, dimension (2*N) */ /* Workspace. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Beresford Parlett, University of California, Berkeley, USA */ /* Jim Demmel, University of California, Berkeley, USA */ /* Inderjit Dhillon, University of Texas, Austin, USA */ /* Osni Marques, LBNL/NERSC, USA */ /* Christof Voemel, University of California, Berkeley, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --work; --lplus; --dplus; --werr; --wgap; --w; --ld; --l; --d__; /* Function Body */ *info = 0; fact = 2.; eps = dlamch_("Precision"); shift = 0; forcer = FALSE_; /* Note that we cannot guarantee that for any of the shifts tried, */ /* the factorization has a small or even moderate element growth. */ /* There could be Ritz values at both ends of the cluster and despite */ /* backing off, there are examples where all factorizations tried */ /* (in IEEE mode, allowing zero pivots & infinities) have INFINITE */ /* element growth. */ /* For this reason, we should use PIVMIN in this subroutine so that at */ /* least the L D L^T factorization exists. It can be checked afterwards */ /* whether the element growth caused bad residuals/orthogonality. */ /* Decide whether the code should accept the best among all */ /* representations despite large element growth or signal INFO=1 */ nofail = TRUE_; /* Compute the average gap length of the cluster */ clwdth = (d__1 = w[*clend] - w[*clstrt], abs(d__1)) + werr[*clend] + werr[ *clstrt]; avgap = clwdth / (doublereal) (*clend - *clstrt); mingap = min(*clgapl,*clgapr); /* Initial values for shifts to both ends of cluster */ /* Computing MIN */ d__1 = w[*clstrt], d__2 = w[*clend]; lsigma = min(d__1,d__2) - werr[*clstrt]; /* Computing MAX */ d__1 = w[*clstrt], d__2 = w[*clend]; rsigma = max(d__1,d__2) + werr[*clend]; /* Use a small fudge to make sure that we really shift to the outside */ lsigma -= abs(lsigma) * 4. * eps; rsigma += abs(rsigma) * 4. * eps; /* Compute upper bounds for how much to back off the initial shifts */ ldmax = mingap * .25 + *pivmin * 2.; rdmax = mingap * .25 + *pivmin * 2.; /* Computing MAX */ d__1 = avgap, d__2 = wgap[*clstrt]; ldelta = max(d__1,d__2) / fact; /* Computing MAX */ d__1 = avgap, d__2 = wgap[*clend - 1]; rdelta = max(d__1,d__2) / fact; /* Initialize the record of the best representation found */ s = dlamch_("S"); smlgrowth = 1. / s; fail = (doublereal) (*n - 1) * mingap / (*spdiam * eps); fail2 = (doublereal) (*n - 1) * mingap / (*spdiam * sqrt(eps)); bestshift = lsigma; /* while (KTRY <= KTRYMAX) */ ktry = 0; growthbound = *spdiam * 8.; L5: sawnan1 = FALSE_; sawnan2 = FALSE_; /* Ensure that we do not back off too much of the initial shifts */ ldelta = min(ldmax,ldelta); rdelta = min(rdmax,rdelta); /* Compute the element growth when shifting to both ends of the cluster */ /* accept the shift if there is no element growth at one of the two ends */ /* Left end */ s = -lsigma; dplus[1] = d__[1] + s; if (abs(dplus[1]) < *pivmin) { dplus[1] = -(*pivmin); /* Need to set SAWNAN1 because refined RRR test should not be used */ /* in this case */ sawnan1 = TRUE_; } max1 = abs(dplus[1]); i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { lplus[i__] = ld[i__] / dplus[i__]; s = s * lplus[i__] * l[i__] - lsigma; dplus[i__ + 1] = d__[i__ + 1] + s; if ((d__1 = dplus[i__ + 1], abs(d__1)) < *pivmin) { dplus[i__ + 1] = -(*pivmin); /* Need to set SAWNAN1 because refined RRR test should not be used */ /* in this case */ sawnan1 = TRUE_; } /* Computing MAX */ d__2 = max1, d__3 = (d__1 = dplus[i__ + 1], abs(d__1)); max1 = max(d__2,d__3); /* L6: */ } sawnan1 = sawnan1 || disnan_(&max1); if (forcer || max1 <= growthbound && ! sawnan1) { *sigma = lsigma; shift = 1; goto L100; } /* Right end */ s = -rsigma; work[1] = d__[1] + s; if (abs(work[1]) < *pivmin) { work[1] = -(*pivmin); /* Need to set SAWNAN2 because refined RRR test should not be used */ /* in this case */ sawnan2 = TRUE_; } max2 = abs(work[1]); i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { work[*n + i__] = ld[i__] / work[i__]; s = s * work[*n + i__] * l[i__] - rsigma; work[i__ + 1] = d__[i__ + 1] + s; if ((d__1 = work[i__ + 1], abs(d__1)) < *pivmin) { work[i__ + 1] = -(*pivmin); /* Need to set SAWNAN2 because refined RRR test should not be used */ /* in this case */ sawnan2 = TRUE_; } /* Computing MAX */ d__2 = max2, d__3 = (d__1 = work[i__ + 1], abs(d__1)); max2 = max(d__2,d__3); /* L7: */ } sawnan2 = sawnan2 || disnan_(&max2); if (forcer || max2 <= growthbound && ! sawnan2) { *sigma = rsigma; shift = 2; goto L100; } /* If we are at this point, both shifts led to too much element growth */ /* Record the better of the two shifts (provided it didn't lead to NaN) */ if (sawnan1 && sawnan2) { /* both MAX1 and MAX2 are NaN */ goto L50; } else { if (! sawnan1) { indx = 1; if (max1 <= smlgrowth) { smlgrowth = max1; bestshift = lsigma; } } if (! sawnan2) { if (sawnan1 || max2 <= max1) { indx = 2; } if (max2 <= smlgrowth) { smlgrowth = max2; bestshift = rsigma; } } } /* If we are here, both the left and the right shift led to */ /* element growth. If the element growth is moderate, then */ /* we may still accept the representation, if it passes a */ /* refined test for RRR. This test supposes that no NaN occurred. */ /* Moreover, we use the refined RRR test only for isolated clusters. */ if (clwdth < mingap / 128. && min(max1,max2) < fail2 && ! sawnan1 && ! sawnan2) { dorrr1 = TRUE_; } else { dorrr1 = FALSE_; } tryrrr1 = TRUE_; if (tryrrr1 && dorrr1) { if (indx == 1) { tmp = (d__1 = dplus[*n], abs(d__1)); znm2 = 1.; prod = 1.; oldp = 1.; for (i__ = *n - 1; i__ >= 1; --i__) { if (prod <= eps) { prod = dplus[i__ + 1] * work[*n + i__ + 1] / (dplus[i__] * work[*n + i__]) * oldp; } else { prod *= (d__1 = work[*n + i__], abs(d__1)); } oldp = prod; /* Computing 2nd power */ d__1 = prod; znm2 += d__1 * d__1; /* Computing MAX */ d__2 = tmp, d__3 = (d__1 = dplus[i__] * prod, abs(d__1)); tmp = max(d__2,d__3); /* L15: */ } rrr1 = tmp / (*spdiam * sqrt(znm2)); if (rrr1 <= 8.) { *sigma = lsigma; shift = 1; goto L100; } } else if (indx == 2) { tmp = (d__1 = work[*n], abs(d__1)); znm2 = 1.; prod = 1.; oldp = 1.; for (i__ = *n - 1; i__ >= 1; --i__) { if (prod <= eps) { prod = work[i__ + 1] * lplus[i__ + 1] / (work[i__] * lplus[i__]) * oldp; } else { prod *= (d__1 = lplus[i__], abs(d__1)); } oldp = prod; /* Computing 2nd power */ d__1 = prod; znm2 += d__1 * d__1; /* Computing MAX */ d__2 = tmp, d__3 = (d__1 = work[i__] * prod, abs(d__1)); tmp = max(d__2,d__3); /* L16: */ } rrr2 = tmp / (*spdiam * sqrt(znm2)); if (rrr2 <= 8.) { *sigma = rsigma; shift = 2; goto L100; } } } L50: if (ktry < 1) { /* If we are here, both shifts failed also the RRR test. */ /* Back off to the outside */ /* Computing MAX */ d__1 = lsigma - ldelta, d__2 = lsigma - ldmax; lsigma = max(d__1,d__2); /* Computing MIN */ d__1 = rsigma + rdelta, d__2 = rsigma + rdmax; rsigma = min(d__1,d__2); ldelta *= 2.; rdelta *= 2.; ++ktry; goto L5; } else { /* None of the representations investigated satisfied our */ /* criteria. Take the best one we found. */ if (smlgrowth < fail || nofail) { lsigma = bestshift; rsigma = bestshift; forcer = TRUE_; goto L5; } else { *info = 1; return 0; } } L100: if (shift == 1) { } else if (shift == 2) { /* store new L and D back into DPLUS, LPLUS */ dcopy_(n, &work[1], &c__1, &dplus[1], &c__1); i__1 = *n - 1; dcopy_(&i__1, &work[*n + 1], &c__1, &lplus[1], &c__1); } return 0; /* End of DLARRF */ } /* dlarrf_ */