/* dsyr2k.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Subroutine */ int dsyr2k_(char *uplo, char *trans, integer *n, integer *k, doublereal *alpha, doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *beta, doublereal *c__, integer *ldc) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, i__3; /* Local variables */ integer i__, j, l, info; doublereal temp1, temp2; extern logical lsame_(char *, char *); integer nrowa; logical upper; extern /* Subroutine */ int xerbla_(char *, integer *); /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DSYR2K performs one of the symmetric rank 2k operations */ /* C := alpha*A*B' + alpha*B*A' + beta*C, */ /* or */ /* C := alpha*A'*B + alpha*B'*A + beta*C, */ /* where alpha and beta are scalars, C is an n by n symmetric matrix */ /* and A and B are n by k matrices in the first case and k by n */ /* matrices in the second case. */ /* Arguments */ /* ========== */ /* UPLO - CHARACTER*1. */ /* On entry, UPLO specifies whether the upper or lower */ /* triangular part of the array C is to be referenced as */ /* follows: */ /* UPLO = 'U' or 'u' Only the upper triangular part of C */ /* is to be referenced. */ /* UPLO = 'L' or 'l' Only the lower triangular part of C */ /* is to be referenced. */ /* Unchanged on exit. */ /* TRANS - CHARACTER*1. */ /* On entry, TRANS specifies the operation to be performed as */ /* follows: */ /* TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' + */ /* beta*C. */ /* TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A + */ /* beta*C. */ /* TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A + */ /* beta*C. */ /* Unchanged on exit. */ /* N - INTEGER. */ /* On entry, N specifies the order of the matrix C. N must be */ /* at least zero. */ /* Unchanged on exit. */ /* K - INTEGER. */ /* On entry with TRANS = 'N' or 'n', K specifies the number */ /* of columns of the matrices A and B, and on entry with */ /* TRANS = 'T' or 't' or 'C' or 'c', K specifies the number */ /* of rows of the matrices A and B. K must be at least zero. */ /* Unchanged on exit. */ /* ALPHA - DOUBLE PRECISION. */ /* On entry, ALPHA specifies the scalar alpha. */ /* Unchanged on exit. */ /* A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is */ /* k when TRANS = 'N' or 'n', and is n otherwise. */ /* Before entry with TRANS = 'N' or 'n', the leading n by k */ /* part of the array A must contain the matrix A, otherwise */ /* the leading k by n part of the array A must contain the */ /* matrix A. */ /* Unchanged on exit. */ /* LDA - INTEGER. */ /* On entry, LDA specifies the first dimension of A as declared */ /* in the calling (sub) program. When TRANS = 'N' or 'n' */ /* then LDA must be at least max( 1, n ), otherwise LDA must */ /* be at least max( 1, k ). */ /* Unchanged on exit. */ /* B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is */ /* k when TRANS = 'N' or 'n', and is n otherwise. */ /* Before entry with TRANS = 'N' or 'n', the leading n by k */ /* part of the array B must contain the matrix B, otherwise */ /* the leading k by n part of the array B must contain the */ /* matrix B. */ /* Unchanged on exit. */ /* LDB - INTEGER. */ /* On entry, LDB specifies the first dimension of B as declared */ /* in the calling (sub) program. When TRANS = 'N' or 'n' */ /* then LDB must be at least max( 1, n ), otherwise LDB must */ /* be at least max( 1, k ). */ /* Unchanged on exit. */ /* BETA - DOUBLE PRECISION. */ /* On entry, BETA specifies the scalar beta. */ /* Unchanged on exit. */ /* C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). */ /* Before entry with UPLO = 'U' or 'u', the leading n by n */ /* upper triangular part of the array C must contain the upper */ /* triangular part of the symmetric matrix and the strictly */ /* lower triangular part of C is not referenced. On exit, the */ /* upper triangular part of the array C is overwritten by the */ /* upper triangular part of the updated matrix. */ /* Before entry with UPLO = 'L' or 'l', the leading n by n */ /* lower triangular part of the array C must contain the lower */ /* triangular part of the symmetric matrix and the strictly */ /* upper triangular part of C is not referenced. On exit, the */ /* lower triangular part of the array C is overwritten by the */ /* lower triangular part of the updated matrix. */ /* LDC - INTEGER. */ /* On entry, LDC specifies the first dimension of C as declared */ /* in the calling (sub) program. LDC must be at least */ /* max( 1, n ). */ /* Unchanged on exit. */ /* Level 3 Blas routine. */ /* -- Written on 8-February-1989. */ /* Jack Dongarra, Argonne National Laboratory. */ /* Iain Duff, AERE Harwell. */ /* Jeremy Du Croz, Numerical Algorithms Group Ltd. */ /* Sven Hammarling, Numerical Algorithms Group Ltd. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Parameters .. */ /* .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; /* Function Body */ if (lsame_(trans, "N")) { nrowa = *n; } else { nrowa = *k; } upper = lsame_(uplo, "U"); info = 0; if (! upper && ! lsame_(uplo, "L")) { info = 1; } else if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C")) { info = 2; } else if (*n < 0) { info = 3; } else if (*k < 0) { info = 4; } else if (*lda < max(1,nrowa)) { info = 7; } else if (*ldb < max(1,nrowa)) { info = 9; } else if (*ldc < max(1,*n)) { info = 12; } if (info != 0) { xerbla_("DSYR2K", &info); return 0; } /* Quick return if possible. */ if (*n == 0 || (*alpha == 0. || *k == 0) && *beta == 1.) { return 0; } /* And when alpha.eq.zero. */ if (*alpha == 0.) { if (upper) { if (*beta == 0.) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = 0.; /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; /* L30: */ } /* L40: */ } } } else { if (*beta == 0.) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = 0.; /* L50: */ } /* L60: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; /* L70: */ } /* L80: */ } } } return 0; } /* Start the operations. */ if (lsame_(trans, "N")) { /* Form C := alpha*A*B' + alpha*B*A' + C. */ if (upper) { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (*beta == 0.) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = 0.; /* L90: */ } } else if (*beta != 1.) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; /* L100: */ } } i__2 = *k; for (l = 1; l <= i__2; ++l) { if (a[j + l * a_dim1] != 0. || b[j + l * b_dim1] != 0.) { temp1 = *alpha * b[j + l * b_dim1]; temp2 = *alpha * a[j + l * a_dim1]; i__3 = j; for (i__ = 1; i__ <= i__3; ++i__) { c__[i__ + j * c_dim1] = c__[i__ + j * c_dim1] + a[ i__ + l * a_dim1] * temp1 + b[i__ + l * b_dim1] * temp2; /* L110: */ } } /* L120: */ } /* L130: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { if (*beta == 0.) { i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = 0.; /* L140: */ } } else if (*beta != 1.) { i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; /* L150: */ } } i__2 = *k; for (l = 1; l <= i__2; ++l) { if (a[j + l * a_dim1] != 0. || b[j + l * b_dim1] != 0.) { temp1 = *alpha * b[j + l * b_dim1]; temp2 = *alpha * a[j + l * a_dim1]; i__3 = *n; for (i__ = j; i__ <= i__3; ++i__) { c__[i__ + j * c_dim1] = c__[i__ + j * c_dim1] + a[ i__ + l * a_dim1] * temp1 + b[i__ + l * b_dim1] * temp2; /* L160: */ } } /* L170: */ } /* L180: */ } } } else { /* Form C := alpha*A'*B + alpha*B'*A + C. */ if (upper) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { temp1 = 0.; temp2 = 0.; i__3 = *k; for (l = 1; l <= i__3; ++l) { temp1 += a[l + i__ * a_dim1] * b[l + j * b_dim1]; temp2 += b[l + i__ * b_dim1] * a[l + j * a_dim1]; /* L190: */ } if (*beta == 0.) { c__[i__ + j * c_dim1] = *alpha * temp1 + *alpha * temp2; } else { c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] + *alpha * temp1 + *alpha * temp2; } /* L200: */ } /* L210: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { temp1 = 0.; temp2 = 0.; i__3 = *k; for (l = 1; l <= i__3; ++l) { temp1 += a[l + i__ * a_dim1] * b[l + j * b_dim1]; temp2 += b[l + i__ * b_dim1] * a[l + j * a_dim1]; /* L220: */ } if (*beta == 0.) { c__[i__ + j * c_dim1] = *alpha * temp1 + *alpha * temp2; } else { c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] + *alpha * temp1 + *alpha * temp2; } /* L230: */ } /* L240: */ } } } return 0; /* End of DSYR2K. */ } /* dsyr2k_ */