/* slaset.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Subroutine */ int slaset_(char *uplo, integer *m, integer *n, real *alpha, real *beta, real *a, integer *lda) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer i__, j; extern logical lsame_(char *, char *); /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLASET initializes an m-by-n matrix A to BETA on the diagonal and */ /* ALPHA on the offdiagonals. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* Specifies the part of the matrix A to be set. */ /* = 'U': Upper triangular part is set; the strictly lower */ /* triangular part of A is not changed. */ /* = 'L': Lower triangular part is set; the strictly upper */ /* triangular part of A is not changed. */ /* Otherwise: All of the matrix A is set. */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* ALPHA (input) REAL */ /* The constant to which the offdiagonal elements are to be set. */ /* BETA (input) REAL */ /* The constant to which the diagonal elements are to be set. */ /* A (input/output) REAL array, dimension (LDA,N) */ /* On exit, the leading m-by-n submatrix of A is set as follows: */ /* if UPLO = 'U', A(i,j) = ALPHA, 1<=i<=j-1, 1<=j<=n, */ /* if UPLO = 'L', A(i,j) = ALPHA, j+1<=i<=m, 1<=j<=n, */ /* otherwise, A(i,j) = ALPHA, 1<=i<=m, 1<=j<=n, i.ne.j, */ /* and, for all UPLO, A(i,i) = BETA, 1<=i<=min(m,n). */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; /* Function Body */ if (lsame_(uplo, "U")) { /* Set the strictly upper triangular or trapezoidal part of the */ /* array to ALPHA. */ i__1 = *n; for (j = 2; j <= i__1; ++j) { /* Computing MIN */ i__3 = j - 1; i__2 = min(i__3,*m); for (i__ = 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] = *alpha; /* L10: */ } /* L20: */ } } else if (lsame_(uplo, "L")) { /* Set the strictly lower triangular or trapezoidal part of the */ /* array to ALPHA. */ i__1 = min(*m,*n); for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = j + 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] = *alpha; /* L30: */ } /* L40: */ } } else { /* Set the leading m-by-n submatrix to ALPHA. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { a[i__ + j * a_dim1] = *alpha; /* L50: */ } /* L60: */ } } /* Set the first min(M,N) diagonal elements to BETA. */ i__1 = min(*m,*n); for (i__ = 1; i__ <= i__1; ++i__) { a[i__ + i__ * a_dim1] = *beta; /* L70: */ } return 0; /* End of SLASET */ } /* slaset_ */