/* sorgl2.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Subroutine */ int sorgl2_(integer *m, integer *n, integer *k, real *a, integer *lda, real *tau, real *work, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; real r__1; /* Local variables */ integer i__, j, l; extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), slarf_(char *, integer *, integer *, real *, integer *, real *, real *, integer *, real *), xerbla_(char *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SORGL2 generates an m by n real matrix Q with orthonormal rows, */ /* which is defined as the first m rows of a product of k elementary */ /* reflectors of order n */ /* Q = H(k) . . . H(2) H(1) */ /* as returned by SGELQF. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix Q. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix Q. N >= M. */ /* K (input) INTEGER */ /* The number of elementary reflectors whose product defines the */ /* matrix Q. M >= K >= 0. */ /* A (input/output) REAL array, dimension (LDA,N) */ /* On entry, the i-th row must contain the vector which defines */ /* the elementary reflector H(i), for i = 1,2,...,k, as returned */ /* by SGELQF in the first k rows of its array argument A. */ /* On exit, the m-by-n matrix Q. */ /* LDA (input) INTEGER */ /* The first dimension of the array A. LDA >= max(1,M). */ /* TAU (input) REAL array, dimension (K) */ /* TAU(i) must contain the scalar factor of the elementary */ /* reflector H(i), as returned by SGELQF. */ /* WORK (workspace) REAL array, dimension (M) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument has an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < *m) { *info = -2; } else if (*k < 0 || *k > *m) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } if (*info != 0) { i__1 = -(*info); xerbla_("SORGL2", &i__1); return 0; } /* Quick return if possible */ if (*m <= 0) { return 0; } if (*k < *m) { /* Initialise rows k+1:m to rows of the unit matrix */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (l = *k + 1; l <= i__2; ++l) { a[l + j * a_dim1] = 0.f; /* L10: */ } if (j > *k && j <= *m) { a[j + j * a_dim1] = 1.f; } /* L20: */ } } for (i__ = *k; i__ >= 1; --i__) { /* Apply H(i) to A(i:m,i:n) from the right */ if (i__ < *n) { if (i__ < *m) { a[i__ + i__ * a_dim1] = 1.f; i__1 = *m - i__; i__2 = *n - i__ + 1; slarf_("Right", &i__1, &i__2, &a[i__ + i__ * a_dim1], lda, & tau[i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]); } i__1 = *n - i__; r__1 = -tau[i__]; sscal_(&i__1, &r__1, &a[i__ + (i__ + 1) * a_dim1], lda); } a[i__ + i__ * a_dim1] = 1.f - tau[i__]; /* Set A(i,1:i-1) to zero */ i__1 = i__ - 1; for (l = 1; l <= i__1; ++l) { a[i__ + l * a_dim1] = 0.f; /* L30: */ } /* L40: */ } return 0; /* End of SORGL2 */ } /* sorgl2_ */