#!/usr/bin/env python import numpy as np import cv2 as cv import os from tests_common import NewOpenCVTests # Plaidml is an optional backend pkgs = [ ('ocl' , cv.gapi.core.ocl.kernels()), ('cpu' , cv.gapi.core.cpu.kernels()), ('fluid' , cv.gapi.core.fluid.kernels()) # ('plaidml', cv.gapi.core.plaidml.kernels()) ] class gapi_imgproc_test(NewOpenCVTests): def test_good_features_to_track(self): # TODO: Extend to use any type and size here img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')]) in1 = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY) # NB: goodFeaturesToTrack configuration max_corners = 50 quality_lvl = 0.01 min_distance = 10 block_sz = 3 use_harris_detector = True k = 0.04 mask = None # OpenCV expected = cv.goodFeaturesToTrack(in1, max_corners, quality_lvl, min_distance, mask=mask, blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k) # G-API g_in = cv.GMat() g_out = cv.gapi.goodFeaturesToTrack(g_in, max_corners, quality_lvl, min_distance, mask, block_sz, use_harris_detector, k) comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out)) for pkg_name, pkg in pkgs: actual = comp.apply(cv.gin(in1), args=cv.compile_args(pkg)) # NB: OpenCV & G-API have different output shapes: # OpenCV - (num_points, 1, 2) # G-API - (num_points, 2) # Comparison self.assertEqual(0.0, cv.norm(expected.flatten(), np.array(actual, dtype=np.float32).flatten(), cv.NORM_INF), 'Failed on ' + pkg_name + ' backend') def test_rgb2gray(self): # TODO: Extend to use any type and size here img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')]) in1 = cv.imread(img_path) # OpenCV expected = cv.cvtColor(in1, cv.COLOR_RGB2GRAY) # G-API g_in = cv.GMat() g_out = cv.gapi.RGB2Gray(g_in) comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out)) for pkg_name, pkg in pkgs: actual = comp.apply(cv.gin(in1), args=cv.compile_args(pkg)) # Comparison self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF), 'Failed on ' + pkg_name + ' backend') def test_bounding_rect(self): sz = 1280 fscale = 256 def sample_value(fscale): return np.random.uniform(0, 255 * fscale) / fscale points = np.array([(sample_value(fscale), sample_value(fscale)) for _ in range(1280)], np.float32) # OpenCV expected = cv.boundingRect(points) # G-API g_in = cv.GMat() g_out = cv.gapi.boundingRect(g_in) comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out)) for pkg_name, pkg in pkgs: actual = comp.apply(cv.gin(points), args=cv.compile_args(pkg)) # Comparison self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF), 'Failed on ' + pkg_name + ' backend') if __name__ == '__main__': NewOpenCVTests.bootstrap()