/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #if !defined HAVE_CUDA || defined(CUDA_DISABLER) cv::gpu::OpticalFlowDual_TVL1_GPU::OpticalFlowDual_TVL1_GPU() { throw_nogpu(); } void cv::gpu::OpticalFlowDual_TVL1_GPU::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); } void cv::gpu::OpticalFlowDual_TVL1_GPU::collectGarbage() {} void cv::gpu::OpticalFlowDual_TVL1_GPU::procOneScale(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); } #else using namespace std; using namespace cv; using namespace cv::gpu; cv::gpu::OpticalFlowDual_TVL1_GPU::OpticalFlowDual_TVL1_GPU() { tau = 0.25; lambda = 0.15; theta = 0.3; nscales = 5; warps = 5; epsilon = 0.01; iterations = 300; useInitialFlow = false; } void cv::gpu::OpticalFlowDual_TVL1_GPU::operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy) { CV_Assert( I0.type() == CV_8UC1 || I0.type() == CV_32FC1 ); CV_Assert( I0.size() == I1.size() ); CV_Assert( I0.type() == I1.type() ); CV_Assert( !useInitialFlow || (flowx.size() == I0.size() && flowx.type() == CV_32FC1 && flowy.size() == flowx.size() && flowy.type() == flowx.type()) ); CV_Assert( nscales > 0 ); // allocate memory for the pyramid structure I0s.resize(nscales); I1s.resize(nscales); u1s.resize(nscales); u2s.resize(nscales); I0.convertTo(I0s[0], CV_32F, I0.depth() == CV_8U ? 1.0 : 255.0); I1.convertTo(I1s[0], CV_32F, I1.depth() == CV_8U ? 1.0 : 255.0); if (!useInitialFlow) { flowx.create(I0.size(), CV_32FC1); flowy.create(I0.size(), CV_32FC1); } u1s[0] = flowx; u2s[0] = flowy; I1x_buf.create(I0.size(), CV_32FC1); I1y_buf.create(I0.size(), CV_32FC1); I1w_buf.create(I0.size(), CV_32FC1); I1wx_buf.create(I0.size(), CV_32FC1); I1wy_buf.create(I0.size(), CV_32FC1); grad_buf.create(I0.size(), CV_32FC1); rho_c_buf.create(I0.size(), CV_32FC1); p11_buf.create(I0.size(), CV_32FC1); p12_buf.create(I0.size(), CV_32FC1); p21_buf.create(I0.size(), CV_32FC1); p22_buf.create(I0.size(), CV_32FC1); diff_buf.create(I0.size(), CV_32FC1); // create the scales for (int s = 1; s < nscales; ++s) { gpu::pyrDown(I0s[s - 1], I0s[s]); gpu::pyrDown(I1s[s - 1], I1s[s]); if (I0s[s].cols < 16 || I0s[s].rows < 16) { nscales = s; break; } if (useInitialFlow) { gpu::pyrDown(u1s[s - 1], u1s[s]); gpu::pyrDown(u2s[s - 1], u2s[s]); gpu::multiply(u1s[s], Scalar::all(0.5), u1s[s]); gpu::multiply(u2s[s], Scalar::all(0.5), u2s[s]); } } // pyramidal structure for computing the optical flow for (int s = nscales - 1; s >= 0; --s) { // compute the optical flow at the current scale procOneScale(I0s[s], I1s[s], u1s[s], u2s[s]); // if this was the last scale, finish now if (s == 0) break; // otherwise, upsample the optical flow // zoom the optical flow for the next finer scale gpu::resize(u1s[s], u1s[s - 1], I0s[s - 1].size()); gpu::resize(u2s[s], u2s[s - 1], I0s[s - 1].size()); // scale the optical flow with the appropriate zoom factor gpu::multiply(u1s[s - 1], Scalar::all(2), u1s[s - 1]); gpu::multiply(u2s[s - 1], Scalar::all(2), u2s[s - 1]); } } namespace tvl1flow { void centeredGradient(PtrStepSzf src, PtrStepSzf dx, PtrStepSzf dy); void warpBackward(PtrStepSzf I0, PtrStepSzf I1, PtrStepSzf I1x, PtrStepSzf I1y, PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf I1w, PtrStepSzf I1wx, PtrStepSzf I1wy, PtrStepSzf grad, PtrStepSzf rho); void estimateU(PtrStepSzf I1wx, PtrStepSzf I1wy, PtrStepSzf grad, PtrStepSzf rho_c, PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf error, float l_t, float theta); void estimateDualVariables(PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, float taut); } void cv::gpu::OpticalFlowDual_TVL1_GPU::procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2) { using namespace tvl1flow; const double scaledEpsilon = epsilon * epsilon * I0.size().area(); CV_DbgAssert( I1.size() == I0.size() ); CV_DbgAssert( I1.type() == I0.type() ); CV_DbgAssert( u1.empty() || u1.size() == I0.size() ); CV_DbgAssert( u2.size() == u1.size() ); if (u1.empty()) { u1.create(I0.size(), CV_32FC1); u1.setTo(Scalar::all(0)); u2.create(I0.size(), CV_32FC1); u2.setTo(Scalar::all(0)); } GpuMat I1x = I1x_buf(Rect(0, 0, I0.cols, I0.rows)); GpuMat I1y = I1y_buf(Rect(0, 0, I0.cols, I0.rows)); centeredGradient(I1, I1x, I1y); GpuMat I1w = I1w_buf(Rect(0, 0, I0.cols, I0.rows)); GpuMat I1wx = I1wx_buf(Rect(0, 0, I0.cols, I0.rows)); GpuMat I1wy = I1wy_buf(Rect(0, 0, I0.cols, I0.rows)); GpuMat grad = grad_buf(Rect(0, 0, I0.cols, I0.rows)); GpuMat rho_c = rho_c_buf(Rect(0, 0, I0.cols, I0.rows)); GpuMat p11 = p11_buf(Rect(0, 0, I0.cols, I0.rows)); GpuMat p12 = p12_buf(Rect(0, 0, I0.cols, I0.rows)); GpuMat p21 = p21_buf(Rect(0, 0, I0.cols, I0.rows)); GpuMat p22 = p22_buf(Rect(0, 0, I0.cols, I0.rows)); p11.setTo(Scalar::all(0)); p12.setTo(Scalar::all(0)); p21.setTo(Scalar::all(0)); p22.setTo(Scalar::all(0)); GpuMat diff = diff_buf(Rect(0, 0, I0.cols, I0.rows)); const float l_t = static_cast(lambda * theta); const float taut = static_cast(tau / theta); for (int warpings = 0; warpings < warps; ++warpings) { warpBackward(I0, I1, I1x, I1y, u1, u2, I1w, I1wx, I1wy, grad, rho_c); double error = numeric_limits::max(); for (int n = 0; error > scaledEpsilon && n < iterations; ++n) { estimateU(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22, u1, u2, diff, l_t, static_cast(theta)); error = gpu::sum(diff, norm_buf)[0]; estimateDualVariables(u1, u2, p11, p12, p21, p22, taut); } } } void cv::gpu::OpticalFlowDual_TVL1_GPU::collectGarbage() { I0s.clear(); I1s.clear(); u1s.clear(); u2s.clear(); I1x_buf.release(); I1y_buf.release(); I1w_buf.release(); I1wx_buf.release(); I1wy_buf.release(); grad_buf.release(); rho_c_buf.release(); p11_buf.release(); p12_buf.release(); p21_buf.release(); p22_buf.release(); diff_buf.release(); norm_buf.release(); } #endif // !defined HAVE_CUDA || defined(CUDA_DISABLER)