#include "openvx_hal.hpp" #include "opencv2/core/hal/interface.h" #include "opencv2/imgproc/hal/interface.h" #include "opencv2/features2d/hal/interface.h" #define IVX_HIDE_INFO_WARNINGS #include "ivx.hpp" #include #include #include #include #include #include #include //================================================================================================== // utility // ... #if 0 #include #define PRINT(...) printf(__VA_ARGS__) #define PRINT_HALERR_MSG(type) PRINT("OpenVX HAL impl "#type" error: %s\n", e.what()) #else #define PRINT(...) #define PRINT_HALERR_MSG(type) (void)e #endif #if __cplusplus >= 201103L #include struct Tick { typedef std::chrono::time_point point_t; point_t start; point_t point; Tick() { start = std::chrono::steady_clock::now(); point = std::chrono::steady_clock::now(); } inline int one() { point_t old = point; point = std::chrono::steady_clock::now(); return std::chrono::duration_cast(point - old).count(); } inline int total() { return std::chrono::duration_cast(std::chrono::steady_clock::now() - start).count(); } }; #endif inline ivx::Context& getOpenVXHALContext() { #if __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1800) //CXX11 static thread_local ivx::Context instance = ivx::Context::create(); #else //__cplusplus >= 201103L || _MSC_VER >= 1800 //CXX98 #ifdef _WIN32 static __declspec(thread) ivx::Context instance = ivx::Context::create(); #else static __thread ivx::Context instance = ivx::Context::create(); #endif #endif return instance; } inline bool dimTooBig(int size) { static vx_uint16 current_vendor = getOpenVXHALContext().vendorID(); if (current_vendor == VX_ID_KHRONOS || current_vendor == VX_ID_DEFAULT) { //OpenVX use uint32_t for image addressing return ((unsigned)size > (UINT_MAX / VX_SCALE_UNITY)); } else return false; } //OpenVX calls have essential overhead so it make sense to skip them for small images template inline bool skipSmallImages(int w, int h) { return w*h < 7680 * 4320; } template <> inline bool skipSmallImages(int w, int h) { return w*h < 640 * 480; } template <> inline bool skipSmallImages(int w, int h) { return w*h < 2048 * 1536; } template <> inline bool skipSmallImages(int w, int h) { return w*h < 640 * 480; } template <> inline bool skipSmallImages(int w, int h) { return w*h < 1280 * 720; } template <> inline bool skipSmallImages(int w, int h) { return w*h < 320 * 240; } template <> inline bool skipSmallImages(int w, int h) { return w*h < 320 * 240; } inline void setConstantBorder(ivx::border_t &border, vx_uint8 val) { border.mode = VX_BORDER_CONSTANT; #if VX_VERSION > VX_VERSION_1_0 border.constant_value.U8 = val; #else border.constant_value = val; #endif } inline void refineStep(int w, int h, int imgType, size_t& step) { if (h == 1) step = w * ((imgType == VX_DF_IMAGE_RGBX || imgType == VX_DF_IMAGE_U32 || imgType == VX_DF_IMAGE_S32) ? 4 : imgType == VX_DF_IMAGE_RGB ? 3 : (imgType == VX_DF_IMAGE_U16 || imgType == VX_DF_IMAGE_S16 || imgType == VX_DF_IMAGE_UYVY || imgType == VX_DF_IMAGE_YUYV) ? 2 : 1); } //================================================================================================== // ivx::Image wrapped to simplify call to swapHandle prior to release // TODO update ivx::Image to handle swapHandle prior to release on the own class vxImage: public ivx::Image { public: vxImage(const ivx::Image &_img) : ivx::Image(_img) {} ~vxImage() { #if VX_VERSION > VX_VERSION_1_0 swapHandle(); #endif } }; //================================================================================================== // real code starts here // ... #define OVX_BINARY_OP(hal_func, ovx_call, kernel_id) \ template \ int ovx_hal_##hal_func(const T *a, size_t astep, const T *b, size_t bstep, T *c, size_t cstep, int w, int h) \ { \ if(skipSmallImages(w, h)) \ return CV_HAL_ERROR_NOT_IMPLEMENTED; \ if(dimTooBig(w) || dimTooBig(h)) \ return CV_HAL_ERROR_NOT_IMPLEMENTED; \ refineStep(w, h, ivx::TypeToEnum::imgType, astep); \ refineStep(w, h, ivx::TypeToEnum::imgType, bstep); \ refineStep(w, h, ivx::TypeToEnum::imgType, cstep); \ try \ { \ ivx::Context ctx = getOpenVXHALContext(); \ vxImage \ ia = ivx::Image::createFromHandle(ctx, ivx::TypeToEnum::imgType, \ ivx::Image::createAddressing(w, h, sizeof(T), (vx_int32)(astep)), (void*)a), \ ib = ivx::Image::createFromHandle(ctx, ivx::TypeToEnum::imgType, \ ivx::Image::createAddressing(w, h, sizeof(T), (vx_int32)(bstep)), (void*)b), \ ic = ivx::Image::createFromHandle(ctx, ivx::TypeToEnum::imgType, \ ivx::Image::createAddressing(w, h, sizeof(T), (vx_int32)(cstep)), (void*)c); \ ovx_call \ } \ catch (ivx::RuntimeError & e) \ { \ PRINT_HALERR_MSG(runtime); \ return CV_HAL_ERROR_UNKNOWN; \ } \ catch (ivx::WrapperError & e) \ { \ PRINT_HALERR_MSG(wrapper); \ return CV_HAL_ERROR_UNKNOWN; \ } \ return CV_HAL_ERROR_OK; \ } OVX_BINARY_OP(add, { ivx::IVX_CHECK_STATUS(vxuAdd(ctx, ia, ib, VX_CONVERT_POLICY_SATURATE, ic)); }, VX_KERNEL_ADD) OVX_BINARY_OP(sub, { ivx::IVX_CHECK_STATUS(vxuSubtract(ctx, ia, ib, VX_CONVERT_POLICY_SATURATE, ic)); }, VX_KERNEL_SUBTRACT) OVX_BINARY_OP(absdiff, { ivx::IVX_CHECK_STATUS(vxuAbsDiff(ctx, ia, ib, ic)); }, VX_KERNEL_ABSDIFF) OVX_BINARY_OP(and, { ivx::IVX_CHECK_STATUS(vxuAnd(ctx, ia, ib, ic)); }, VX_KERNEL_AND) OVX_BINARY_OP(or , { ivx::IVX_CHECK_STATUS(vxuOr(ctx, ia, ib, ic)); }, VX_KERNEL_OR) OVX_BINARY_OP(xor, { ivx::IVX_CHECK_STATUS(vxuXor(ctx, ia, ib, ic)); }, VX_KERNEL_XOR) template int ovx_hal_mul(const T *a, size_t astep, const T *b, size_t bstep, T *c, size_t cstep, int w, int h, double scale) { if(scale == 1.0 || sizeof(T) > 1 ? skipSmallImages(w, h) : /*actually it could be any kernel with generic minimum size*/ skipSmallImages(w, h) ) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (dimTooBig(w) || dimTooBig(h)) return CV_HAL_ERROR_NOT_IMPLEMENTED; refineStep(w, h, ivx::TypeToEnum::imgType, astep); refineStep(w, h, ivx::TypeToEnum::imgType, bstep); refineStep(w, h, ivx::TypeToEnum::imgType, cstep); #ifdef _WIN32 const float MAGIC_SCALE = 0x0.01010102p0; #else const float MAGIC_SCALE = 0.003922; // 0x1.010102p-8; #endif try { int rounding_policy = VX_ROUND_POLICY_TO_ZERO; float fscale = (float)scale; if (fabs(fscale - MAGIC_SCALE) > FLT_EPSILON) { int exp = 0; double significand = frexp(fscale, &exp); if ((significand != 0.5) || (exp > 1) || (exp < -14)) return CV_HAL_ERROR_NOT_IMPLEMENTED; } else { fscale = MAGIC_SCALE; rounding_policy = VX_ROUND_POLICY_TO_NEAREST_EVEN;// That's the only rounding that MUST be supported for 1/255 scale } ivx::Context ctx = getOpenVXHALContext(); vxImage ia = ivx::Image::createFromHandle(ctx, ivx::TypeToEnum::imgType, ivx::Image::createAddressing(w, h, sizeof(T), (vx_int32)(astep)), (void*)a), ib = ivx::Image::createFromHandle(ctx, ivx::TypeToEnum::imgType, ivx::Image::createAddressing(w, h, sizeof(T), (vx_int32)(bstep)), (void*)b), ic = ivx::Image::createFromHandle(ctx, ivx::TypeToEnum::imgType, ivx::Image::createAddressing(w, h, sizeof(T), (vx_int32)(cstep)), (void*)c); ivx::IVX_CHECK_STATUS(vxuMultiply(ctx, ia, ib, fscale, VX_CONVERT_POLICY_SATURATE, rounding_policy, ic)); } catch (ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } template int ovx_hal_add(const uchar *a, size_t astep, const uchar *b, size_t bstep, uchar *c, size_t cstep, int w, int h); template int ovx_hal_add(const short *a, size_t astep, const short *b, size_t bstep, short *c, size_t cstep, int w, int h); template int ovx_hal_sub(const uchar *a, size_t astep, const uchar *b, size_t bstep, uchar *c, size_t cstep, int w, int h); template int ovx_hal_sub(const short *a, size_t astep, const short *b, size_t bstep, short *c, size_t cstep, int w, int h); template int ovx_hal_absdiff(const uchar *a, size_t astep, const uchar *b, size_t bstep, uchar *c, size_t cstep, int w, int h); template int ovx_hal_absdiff(const short *a, size_t astep, const short *b, size_t bstep, short *c, size_t cstep, int w, int h); template int ovx_hal_and(const uchar *a, size_t astep, const uchar *b, size_t bstep, uchar *c, size_t cstep, int w, int h); template int ovx_hal_or(const uchar *a, size_t astep, const uchar *b, size_t bstep, uchar *c, size_t cstep, int w, int h); template int ovx_hal_xor(const uchar *a, size_t astep, const uchar *b, size_t bstep, uchar *c, size_t cstep, int w, int h); template int ovx_hal_mul(const uchar *a, size_t astep, const uchar *b, size_t bstep, uchar *c, size_t cstep, int w, int h, double scale); template int ovx_hal_mul(const short *a, size_t astep, const short *b, size_t bstep, short *c, size_t cstep, int w, int h, double scale); int ovx_hal_not(const uchar *a, size_t astep, uchar *c, size_t cstep, int w, int h) { if (skipSmallImages(w, h)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (dimTooBig(w) || dimTooBig(h)) return CV_HAL_ERROR_NOT_IMPLEMENTED; refineStep(w, h, VX_DF_IMAGE_U8, astep); refineStep(w, h, VX_DF_IMAGE_U8, cstep); try { ivx::Context ctx = getOpenVXHALContext(); vxImage ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(w, h, 1, (vx_int32)(astep)), (void*)a), ic = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(w, h, 1, (vx_int32)(cstep)), (void*)c); ivx::IVX_CHECK_STATUS(vxuNot(ctx, ia, ic)); } catch (ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } int ovx_hal_merge8u(const uchar **src_data, uchar *dst_data, int len, int cn) { if (skipSmallImages(len, 1)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (dimTooBig(len)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (cn != 3 && cn != 4) return CV_HAL_ERROR_NOT_IMPLEMENTED; try { ivx::Context ctx = getOpenVXHALContext(); vxImage ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(len, 1, 1, (vx_int32)(len)), (void*)src_data[0]), ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(len, 1, 1, (vx_int32)(len)), (void*)src_data[1]), ic = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(len, 1, 1, (vx_int32)(len)), (void*)src_data[2]), id = ivx::Image::createFromHandle(ctx, cn == 4 ? VX_DF_IMAGE_RGBX : VX_DF_IMAGE_RGB, ivx::Image::createAddressing(len, 1, cn, (vx_int32)(len*cn)), (void*)dst_data); ivx::IVX_CHECK_STATUS(vxuChannelCombine(ctx, ia, ib, ic, cn == 4 ? (vx_image)(ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(len, 1, 1, (vx_int32)(len)), (void*)src_data[3])) : NULL, id)); } catch (ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } int ovx_hal_resize(int atype, const uchar *a, size_t astep, int aw, int ah, uchar *b, size_t bstep, int bw, int bh, double inv_scale_x, double inv_scale_y, int interpolation) { if (skipSmallImages(aw, ah)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (dimTooBig(aw) || dimTooBig(ah) || dimTooBig(bw) || dimTooBig(bh)) return CV_HAL_ERROR_NOT_IMPLEMENTED; refineStep(aw, ah, VX_DF_IMAGE_U8, astep); refineStep(bw, bh, VX_DF_IMAGE_U8, bstep); try { ivx::Context ctx = getOpenVXHALContext(); vxImage ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(aw, ah, 1, (vx_int32)(astep)), (void*)a), ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(bw, bh, 1, (vx_int32)(bstep)), (void*)b); if (!((atype == CV_8UC1 || atype == CV_8SC1) && inv_scale_x > 0 && inv_scale_y > 0 && (bw - 0.5) / inv_scale_x - 0.5 < aw && (bh - 0.5) / inv_scale_y - 0.5 < ah && (bw + 0.5) / inv_scale_x + 0.5 >= aw && (bh + 0.5) / inv_scale_y + 0.5 >= ah && std::abs(bw / inv_scale_x - aw) < 0.1 && std::abs(bh / inv_scale_y - ah) < 0.1)) return CV_HAL_ERROR_NOT_IMPLEMENTED; int mode; if (interpolation == CV_HAL_INTER_LINEAR) { mode = VX_INTERPOLATION_BILINEAR; if (inv_scale_x > 1 || inv_scale_y > 1) return CV_HAL_ERROR_NOT_IMPLEMENTED; } else if (interpolation == CV_HAL_INTER_AREA) return CV_HAL_ERROR_NOT_IMPLEMENTED; //mode = VX_INTERPOLATION_AREA; else if (interpolation == CV_HAL_INTER_NEAREST) return CV_HAL_ERROR_NOT_IMPLEMENTED; //mode = VX_INTERPOLATION_NEAREST_NEIGHBOR; else return CV_HAL_ERROR_NOT_IMPLEMENTED; ivx::IVX_CHECK_STATUS(vxuScaleImage(ctx, ia, ib, mode)); } catch (ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } int ovx_hal_warpAffine(int atype, const uchar *a, size_t astep, int aw, int ah, uchar *b, size_t bstep, int bw, int bh, const double M[6], int interpolation, int borderType, const double borderValue[4]) { if (skipSmallImages(aw, ah)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (dimTooBig(aw) || dimTooBig(ah) || dimTooBig(bw) || dimTooBig(bh)) return CV_HAL_ERROR_NOT_IMPLEMENTED; refineStep(aw, ah, VX_DF_IMAGE_U8, astep); refineStep(bw, bh, VX_DF_IMAGE_U8, bstep); try { ivx::Context ctx = getOpenVXHALContext(); vxImage ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(aw, ah, 1, (vx_int32)(astep)), (void*)a), ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(bw, bh, 1, (vx_int32)(bstep)), (void*)b); if (!(atype == CV_8UC1 || atype == CV_8SC1)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if(borderType != CV_HAL_BORDER_CONSTANT) // Neither 1.0 nor 1.1 OpenVX support BORDER_REPLICATE for warpings return CV_HAL_ERROR_NOT_IMPLEMENTED; int mode; if (interpolation == CV_HAL_INTER_LINEAR) mode = VX_INTERPOLATION_BILINEAR; //AREA interpolation is unsupported //else if (interpolation == CV_HAL_INTER_AREA) // mode = VX_INTERPOLATION_AREA; else if (interpolation == CV_HAL_INTER_NEAREST) mode = VX_INTERPOLATION_NEAREST_NEIGHBOR; else return CV_HAL_ERROR_NOT_IMPLEMENTED; std::vector data; data.reserve(6); for (int j = 0; j < 3; ++j) for (int i = 0; i < 2; ++i) data.push_back((float)(M[i * 3 + j])); ivx::Matrix mtx = ivx::Matrix::create(ctx, VX_TYPE_FLOAT32, 2, 3); mtx.copyFrom(data); //ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments //since OpenVX standart says nothing about thread-safety for now ivx::border_t prevBorder = ctx.immediateBorder(); ctx.setImmediateBorder(VX_BORDER_CONSTANT, (vx_uint8)borderValue[0]); ivx::IVX_CHECK_STATUS(vxuWarpAffine(ctx, ia, mtx, mode, ib)); ctx.setImmediateBorder(prevBorder); } catch (ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } int ovx_hal_warpPerspective(int atype, const uchar *a, size_t astep, int aw, int ah, uchar *b, size_t bstep, int bw, int bh, const double M[9], int interpolation, int borderType, const double borderValue[4]) { if (skipSmallImages(aw, ah)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (dimTooBig(aw) || dimTooBig(ah) || dimTooBig(bw) || dimTooBig(bh)) return CV_HAL_ERROR_NOT_IMPLEMENTED; refineStep(aw, ah, VX_DF_IMAGE_U8, astep); refineStep(bw, bh, VX_DF_IMAGE_U8, bstep); try { ivx::Context ctx = getOpenVXHALContext(); vxImage ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(aw, ah, 1, (vx_int32)(astep)), (void*)a), ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(bw, bh, 1, (vx_int32)(bstep)), (void*)b); if (!(atype == CV_8UC1 || atype == CV_8SC1)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (borderType != CV_HAL_BORDER_CONSTANT) // Neither 1.0 nor 1.1 OpenVX support BORDER_REPLICATE for warpings return CV_HAL_ERROR_NOT_IMPLEMENTED; int mode; if (interpolation == CV_HAL_INTER_LINEAR) mode = VX_INTERPOLATION_BILINEAR; //AREA interpolation is unsupported //else if (interpolation == CV_HAL_INTER_AREA) // mode = VX_INTERPOLATION_AREA; else if (interpolation == CV_HAL_INTER_NEAREST) mode = VX_INTERPOLATION_NEAREST_NEIGHBOR; else return CV_HAL_ERROR_NOT_IMPLEMENTED; std::vector data; data.reserve(9); for (int j = 0; j < 3; ++j) for (int i = 0; i < 3; ++i) data.push_back((float)(M[i * 3 + j])); ivx::Matrix mtx = ivx::Matrix::create(ctx, VX_TYPE_FLOAT32, 3, 3); mtx.copyFrom(data); //ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments //since OpenVX standart says nothing about thread-safety for now ivx::border_t prevBorder = ctx.immediateBorder(); ctx.setImmediateBorder(VX_BORDER_CONSTANT, (vx_uint8)borderValue[0]); ivx::IVX_CHECK_STATUS(vxuWarpPerspective(ctx, ia, mtx, mode, ib)); ctx.setImmediateBorder(prevBorder); } catch (ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } struct cvhalFilter2D; struct FilterCtx { ivx::Convolution cnv; int dst_type; ivx::border_t border; FilterCtx(ivx::Context &ctx, const std::vector data, int w, int h, int _dst_type, ivx::border_t & _border) : cnv(ivx::Convolution::create(ctx, w, h)), dst_type(_dst_type), border(_border) { cnv.copyFrom(data); } }; int ovx_hal_filterInit(cvhalFilter2D **filter_context, uchar *kernel_data, size_t kernel_step, int kernel_type, int kernel_width, int kernel_height, int, int, int src_type, int dst_type, int borderType, double delta, int anchor_x, int anchor_y, bool allowSubmatrix, bool allowInplace) { if (!filter_context || !kernel_data || allowSubmatrix || allowInplace || delta != 0 || src_type != CV_8UC1 || (dst_type != CV_8UC1 && dst_type != CV_16SC1) || kernel_width % 2 == 0 || kernel_height % 2 == 0 || anchor_x != kernel_width / 2 || anchor_y != kernel_height / 2) return CV_HAL_ERROR_NOT_IMPLEMENTED; ivx::border_t border; switch (borderType) { case CV_HAL_BORDER_CONSTANT: setConstantBorder(border, 0); break; case CV_HAL_BORDER_REPLICATE: border.mode = VX_BORDER_REPLICATE; break; default: return CV_HAL_ERROR_NOT_IMPLEMENTED; } ivx::Context ctx = getOpenVXHALContext(); std::vector data; data.reserve(kernel_width*kernel_height); switch (kernel_type) { case CV_8UC1: for (int j = 0; j < kernel_height; ++j) { uchar * row = (uchar*)(kernel_data + kernel_step*j); for (int i = 0; i < kernel_width; ++i) data.push_back(row[i]); } break; case CV_8SC1: for (int j = 0; j < kernel_height; ++j) { schar * row = (schar*)(kernel_data + kernel_step*j); for (int i = 0; i < kernel_width; ++i) data.push_back(row[i]); } break; case CV_16SC1: for (int j = 0; j < kernel_height; ++j) { short * row = (short*)(kernel_data + kernel_step*j); for (int i = 0; i < kernel_width; ++i) data.push_back(row[i]); } break; default: return CV_HAL_ERROR_NOT_IMPLEMENTED; } FilterCtx* cnv = new FilterCtx(ctx, data, kernel_width, kernel_height, dst_type, border); if (!cnv) return CV_HAL_ERROR_UNKNOWN; *filter_context = (cvhalFilter2D*)(cnv); return CV_HAL_ERROR_OK; } int ovx_hal_filterFree(cvhalFilter2D *filter_context) { if (filter_context) { delete (FilterCtx*)filter_context; return CV_HAL_ERROR_OK; } else { return CV_HAL_ERROR_UNKNOWN; } } int ovx_hal_filter(cvhalFilter2D *filter_context, uchar *a, size_t astep, uchar *b, size_t bstep, int w, int h, int, int, int, int) { if (skipSmallImages(w, h)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (dimTooBig(w) || dimTooBig(h)) return CV_HAL_ERROR_NOT_IMPLEMENTED; try { FilterCtx* cnv = (FilterCtx*)filter_context; if (!cnv) throw ivx::WrapperError("Bad HAL context"); refineStep(w, h, VX_DF_IMAGE_U8, astep); refineStep(w, h, cnv->dst_type == CV_16SC1 ? VX_DF_IMAGE_S16 : VX_DF_IMAGE_U8, bstep); ivx::Context ctx = getOpenVXHALContext(); vxImage ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(w, h, 1, (vx_int32)(astep)), (void*)a), ib = ivx::Image::createFromHandle(ctx, cnv->dst_type == CV_16SC1 ? VX_DF_IMAGE_S16 : VX_DF_IMAGE_U8, ivx::Image::createAddressing(w, h, cnv->dst_type == CV_16SC1 ? 2 : 1, (vx_int32)(bstep)), (void*)b); //ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments //since OpenVX standart says nothing about thread-safety for now ivx::border_t prevBorder = ctx.immediateBorder(); ctx.setImmediateBorder(cnv->border); ivx::IVX_CHECK_STATUS(vxuConvolve(ctx, ia, cnv->cnv, ib)); ctx.setImmediateBorder(prevBorder); } catch (ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } int ovx_hal_sepFilterInit(cvhalFilter2D **filter_context, int src_type, int dst_type, int kernel_type, uchar *kernelx_data, int kernelx_length, uchar *kernely_data, int kernely_length, int anchor_x, int anchor_y, double delta, int borderType) { if (!filter_context || !kernelx_data || !kernely_data || delta != 0 || src_type != CV_8UC1 || (dst_type != CV_8UC1 && dst_type != CV_16SC1) || kernelx_length != 3 || kernely_length != 3 || anchor_x != 1 || anchor_y != 1) return CV_HAL_ERROR_NOT_IMPLEMENTED; ivx::border_t border; switch (borderType) { case CV_HAL_BORDER_CONSTANT: setConstantBorder(border, 0); break; case CV_HAL_BORDER_REPLICATE: border.mode = VX_BORDER_REPLICATE; break; default: return CV_HAL_ERROR_NOT_IMPLEMENTED; } ivx::Context ctx = getOpenVXHALContext(); //At the moment OpenVX doesn't support separable filters natively so combine kernels to generic convolution std::vector data; data.reserve(kernelx_length*kernely_length); switch (kernel_type) { case CV_8UC1: for (int j = 0; j < kernely_length; ++j) for (int i = 0; i < kernelx_length; ++i) data.push_back((short)(kernely_data[j]) * kernelx_data[i]); break; case CV_8SC1: for (int j = 0; j < kernely_length; ++j) for (int i = 0; i < kernelx_length; ++i) data.push_back((short)(((schar*)kernely_data)[j]) * ((schar*)kernelx_data)[i]); break; default: return CV_HAL_ERROR_NOT_IMPLEMENTED; } FilterCtx* cnv = new FilterCtx(ctx, data, kernelx_length, kernely_length, dst_type, border); if (!cnv) return CV_HAL_ERROR_UNKNOWN; *filter_context = (cvhalFilter2D*)(cnv); return CV_HAL_ERROR_OK; } #if VX_VERSION > VX_VERSION_1_0 struct MorphCtx { ivx::Matrix mask; int operation; ivx::border_t border; MorphCtx(ivx::Context &ctx, const std::vector data, int w, int h, int _operation, ivx::border_t & _border) : mask(ivx::Matrix::create(ctx, ivx::TypeToEnum::value, w, h)), operation(_operation), border(_border) { mask.copyFrom(data); } }; int ovx_hal_morphInit(cvhalFilter2D **filter_context, int operation, int src_type, int dst_type, int, int, int kernel_type, uchar *kernel_data, size_t kernel_step, int kernel_width, int kernel_height, int anchor_x, int anchor_y, int borderType, const double borderValue[4], int iterations, bool allowSubmatrix, bool allowInplace) { if (!filter_context || !kernel_data || allowSubmatrix || allowInplace || iterations != 1 || src_type != CV_8UC1 || dst_type != CV_8UC1 || kernel_width % 2 == 0 || kernel_height % 2 == 0 || anchor_x != kernel_width / 2 || anchor_y != kernel_height / 2) return CV_HAL_ERROR_NOT_IMPLEMENTED; ivx::border_t border; switch (borderType) { case CV_HAL_BORDER_CONSTANT: if (borderValue[0] == DBL_MAX && borderValue[1] == DBL_MAX && borderValue[2] == DBL_MAX && borderValue[3] == DBL_MAX) { if (operation == CV_HAL_MORPH_ERODE) setConstantBorder(border, UCHAR_MAX); else setConstantBorder(border, 0); } else { int rounded = (int)round(borderValue[0]); setConstantBorder(border, (vx_uint8)((unsigned)rounded <= UCHAR_MAX ? rounded : rounded > 0 ? UCHAR_MAX : 0)); } break; case CV_HAL_BORDER_REPLICATE: border.mode = VX_BORDER_REPLICATE; break; default: return CV_HAL_ERROR_NOT_IMPLEMENTED; } ivx::Context ctx = getOpenVXHALContext(); vx_size maxKernelDim = ctx.nonlinearMaxDimension(); if ((vx_size)kernel_width > maxKernelDim || (vx_size)kernel_height > maxKernelDim) return CV_HAL_ERROR_NOT_IMPLEMENTED; std::vector kernel_mat; kernel_mat.reserve(kernel_width * kernel_height); switch (CV_MAT_DEPTH(kernel_type)) { case CV_8U: case CV_8S: for (int j = 0; j < kernel_height; ++j) { uchar * kernel_row = kernel_data + j * kernel_step; for (int i = 0; i < kernel_width; ++i) kernel_mat.push_back(kernel_row[i] ? 255 : 0); } break; case CV_16U: case CV_16S: for (int j = 0; j < kernel_height; ++j) { short * kernel_row = (short*)(kernel_data + j * kernel_step); for (int i = 0; i < kernel_width; ++i) kernel_mat.push_back(kernel_row[i] ? 255 : 0); } break; case CV_32S: for (int j = 0; j < kernel_height; ++j) { int * kernel_row = (int*)(kernel_data + j * kernel_step); for (int i = 0; i < kernel_width; ++i) kernel_mat.push_back(kernel_row[i] ? 255 : 0); } break; case CV_32F: for (int j = 0; j < kernel_height; ++j) { float * kernel_row = (float*)(kernel_data + j * kernel_step); for (int i = 0; i < kernel_width; ++i) kernel_mat.push_back(kernel_row[i] ? 255 : 0); } break; case CV_64F: for (int j = 0; j < kernel_height; ++j) { double * kernel_row = (double*)(kernel_data + j * kernel_step); for (int i = 0; i < kernel_width; ++i) kernel_mat.push_back(kernel_row[i] ? 255 : 0); } break; default: return CV_HAL_ERROR_NOT_IMPLEMENTED; } MorphCtx* mat; switch (operation) { case CV_HAL_MORPH_ERODE: mat = new MorphCtx(ctx, kernel_mat, kernel_width, kernel_height, VX_NONLINEAR_FILTER_MIN, border); break; case CV_HAL_MORPH_DILATE: mat = new MorphCtx(ctx, kernel_mat, kernel_width, kernel_height, VX_NONLINEAR_FILTER_MAX, border); break; default: return CV_HAL_ERROR_NOT_IMPLEMENTED; } if (!mat) return CV_HAL_ERROR_UNKNOWN; *filter_context = (cvhalFilter2D*)(mat); return CV_HAL_ERROR_OK; } int ovx_hal_morphFree(cvhalFilter2D *filter_context) { if (filter_context) { delete (MorphCtx*)filter_context; return CV_HAL_ERROR_OK; } else { return CV_HAL_ERROR_UNKNOWN; } } int ovx_hal_morph(cvhalFilter2D *filter_context, uchar *a, size_t astep, uchar *b, size_t bstep, int w, int h, int, int, int, int, int, int, int, int) { if (skipSmallImages(w, h))//Actually it make sense to separate checks if implementations of dilation and erosion have different performance gain return CV_HAL_ERROR_NOT_IMPLEMENTED; if (dimTooBig(w) || dimTooBig(h)) return CV_HAL_ERROR_NOT_IMPLEMENTED; refineStep(w, h, VX_DF_IMAGE_U8, astep); refineStep(w, h, VX_DF_IMAGE_U8, bstep); try { MorphCtx* mat = (MorphCtx*)filter_context; if (!mat) throw ivx::WrapperError("Bad HAL context"); ivx::Context ctx = getOpenVXHALContext(); vxImage ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(w, h, 1, (vx_int32)(astep)), (void*)a), ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(w, h, 1, (vx_int32)(bstep)), (void*)b); //ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments //since OpenVX standart says nothing about thread-safety for now ivx::border_t prevBorder = ctx.immediateBorder(); ctx.setImmediateBorder(mat->border); ivx::IVX_CHECK_STATUS(vxuNonLinearFilter(ctx, mat->operation, ia, mat->mask, ib)); ctx.setImmediateBorder(prevBorder); } catch (ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } #endif // 1.0 guard int ovx_hal_cvtBGRtoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int depth, int acn, int bcn, bool swapBlue) { if (skipSmallImages(w, h)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (dimTooBig(w) || dimTooBig(h)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (depth != CV_8U || swapBlue || acn == bcn || (acn != 3 && acn != 4) || (bcn != 3 && bcn != 4)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (w & 1 || h & 1) // It's strange but sample implementation unable to convert odd sized images return CV_HAL_ERROR_NOT_IMPLEMENTED; refineStep(w, h, acn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, astep); refineStep(w, h, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, bstep); try { ivx::Context ctx = getOpenVXHALContext(); vxImage ia = ivx::Image::createFromHandle(ctx, acn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, ivx::Image::createAddressing(w, h, acn, (vx_int32)astep), (void*)a), ib = ivx::Image::createFromHandle(ctx, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, ivx::Image::createAddressing(w, h, bcn, (vx_int32)bstep), b); ivx::IVX_CHECK_STATUS(vxuColorConvert(ctx, ia, ib)); } catch (ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } int ovx_hal_cvtGraytoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int depth, int bcn) { if (skipSmallImages(w, h)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (dimTooBig(w) || dimTooBig(h)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (depth != CV_8U || (bcn != 3 && bcn != 4)) return CV_HAL_ERROR_NOT_IMPLEMENTED; refineStep(w, h, VX_DF_IMAGE_U8, astep); refineStep(w, h, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, bstep); try { ivx::Context ctx = getOpenVXHALContext(); ivx::Image ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(w, h, 1, (vx_int32)astep), const_cast(a)), ib = ivx::Image::createFromHandle(ctx, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, ivx::Image::createAddressing(w, h, bcn, (vx_int32)bstep), b); ivx::IVX_CHECK_STATUS(vxuChannelCombine(ctx, ia, ia, ia, bcn == 4 ? (vx_image)(ivx::Image::createUniform(ctx, w, h, VX_DF_IMAGE_U8, vx_uint8(255))) : NULL, ib)); } catch (ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } int ovx_hal_cvtTwoPlaneYUVtoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int bcn, bool swapBlue, int uIdx) { return ovx_hal_cvtTwoPlaneYUVtoBGREx(a, astep, a + h * astep, astep, b, bstep, w, h, bcn, swapBlue, uIdx); } int ovx_hal_cvtTwoPlaneYUVtoBGREx(const uchar * a, size_t astep, const uchar * b, size_t bstep, uchar * c, size_t cstep, int w, int h, int bcn, bool swapBlue, int uIdx) { if (skipSmallImages(w, h)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (dimTooBig(w) || dimTooBig(h)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (!swapBlue || (bcn != 3 && bcn != 4)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (w & 1 || h & 1) // It's not described in spec but sample implementation unable to convert odd sized images return CV_HAL_ERROR_NOT_IMPLEMENTED; try { ivx::Context ctx = getOpenVXHALContext(); std::vector addr; std::vector ptrs; addr.push_back(ivx::Image::createAddressing(w, h, 1, (vx_int32)astep)); ptrs.push_back((void*)a); addr.push_back(ivx::Image::createAddressing(w / 2, h / 2, 2, (vx_int32)bstep)); ptrs.push_back((void*)b); vxImage ia = ivx::Image::createFromHandle(ctx, uIdx ? VX_DF_IMAGE_NV21 : VX_DF_IMAGE_NV12, addr, ptrs); if (ia.range() == VX_CHANNEL_RANGE_FULL) return CV_HAL_ERROR_NOT_IMPLEMENTED; // OpenCV store NV12/NV21 as RANGE_RESTRICTED while OpenVX expect RANGE_FULL vxImage ib = ivx::Image::createFromHandle(ctx, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, ivx::Image::createAddressing(w, h, bcn, (vx_int32)cstep), c); ivx::IVX_CHECK_STATUS(vxuColorConvert(ctx, ia, ib)); } catch (ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } int ovx_hal_cvtThreePlaneYUVtoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int bcn, bool swapBlue, int uIdx) { if (skipSmallImages(w, h)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (dimTooBig(w) || dimTooBig(h)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (!swapBlue || (bcn != 3 && bcn != 4) || uIdx || (size_t)w / 2 != astep - (size_t)w / 2) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (w & 1 || h & 1) // It's not described in spec but sample implementation unable to convert odd sized images return CV_HAL_ERROR_NOT_IMPLEMENTED; refineStep(w, h, VX_DF_IMAGE_IYUV, astep); refineStep(w, h, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, bstep); try { ivx::Context ctx = getOpenVXHALContext(); std::vector addr; std::vector ptrs; addr.push_back(ivx::Image::createAddressing(w, h, 1, (vx_int32)astep)); ptrs.push_back((void*)a); addr.push_back(ivx::Image::createAddressing(w / 2, h / 2, 1, w / 2)); ptrs.push_back((void*)(a + h * astep)); if (addr[1].dim_x != (astep - addr[1].dim_x)) throw ivx::WrapperError("UV planes use variable stride"); addr.push_back(ivx::Image::createAddressing(w / 2, h / 2, 1, w / 2)); ptrs.push_back((void*)(a + h * astep + addr[1].dim_y * addr[1].stride_y)); vxImage ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_IYUV, addr, ptrs); if (ia.range() == VX_CHANNEL_RANGE_FULL) return CV_HAL_ERROR_NOT_IMPLEMENTED; // OpenCV store NV12/NV21 as RANGE_RESTRICTED while OpenVX expect RANGE_FULL vxImage ib = ivx::Image::createFromHandle(ctx, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, ivx::Image::createAddressing(w, h, bcn, (vx_int32)bstep), b); ivx::IVX_CHECK_STATUS(vxuColorConvert(ctx, ia, ib)); } catch (ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } int ovx_hal_cvtBGRtoThreePlaneYUV(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int acn, bool swapBlue, int uIdx) { if (skipSmallImages(w, h)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (dimTooBig(w) || dimTooBig(h)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (!swapBlue || (acn != 3 && acn != 4) || uIdx || (size_t)w / 2 != bstep - (size_t)w / 2) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (w & 1 || h & 1) // It's not described in spec but sample implementation unable to convert odd sized images return CV_HAL_ERROR_NOT_IMPLEMENTED; refineStep(w, h, acn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, astep); refineStep(w, h, VX_DF_IMAGE_IYUV, bstep); try { ivx::Context ctx = getOpenVXHALContext(); vxImage ia = ivx::Image::createFromHandle(ctx, acn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, ivx::Image::createAddressing(w, h, acn, (vx_int32)astep), (void*)a); std::vector addr; std::vector ptrs; addr.push_back(ivx::Image::createAddressing(w, h, 1, (vx_int32)bstep)); ptrs.push_back((void*)b); addr.push_back(ivx::Image::createAddressing(w / 2, h / 2, 1, w / 2)); ptrs.push_back((void*)(b + h * bstep)); if (addr[1].dim_x != (bstep - addr[1].dim_x)) throw ivx::WrapperError("UV planes use variable stride"); addr.push_back(ivx::Image::createAddressing(w / 2, h / 2, 1, w / 2)); ptrs.push_back((void*)(b + h * bstep + addr[1].dim_y * addr[1].stride_y)); vxImage ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_IYUV, addr, ptrs); ivx::IVX_CHECK_STATUS(vxuColorConvert(ctx, ia, ib)); } catch (ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } int ovx_hal_cvtOnePlaneYUVtoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int bcn, bool swapBlue, int uIdx, int ycn) { if (skipSmallImages(w, h)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (dimTooBig(w) || dimTooBig(h)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (!swapBlue || (bcn != 3 && bcn != 4) || uIdx) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (w & 1) // It's not described in spec but sample implementation unable to convert odd sized images return CV_HAL_ERROR_NOT_IMPLEMENTED; refineStep(w, h, ycn ? VX_DF_IMAGE_UYVY : VX_DF_IMAGE_YUYV, astep); refineStep(w, h, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, bstep); try { ivx::Context ctx = getOpenVXHALContext(); vxImage ia = ivx::Image::createFromHandle(ctx, ycn ? VX_DF_IMAGE_UYVY : VX_DF_IMAGE_YUYV, ivx::Image::createAddressing(w, h, 2, (vx_int32)astep), (void*)a); if (ia.range() == VX_CHANNEL_RANGE_FULL) return CV_HAL_ERROR_NOT_IMPLEMENTED; // OpenCV store NV12/NV21 as RANGE_RESTRICTED while OpenVX expect RANGE_FULL vxImage ib = ivx::Image::createFromHandle(ctx, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, ivx::Image::createAddressing(w, h, bcn, (vx_int32)bstep), b); ivx::IVX_CHECK_STATUS(vxuColorConvert(ctx, ia, ib)); } catch (ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } int ovx_hal_integral(int depth, int sdepth, int, const uchar * a, size_t astep, uchar * b, size_t bstep, uchar * c, size_t, uchar * d, size_t, int w, int h, int cn) { if (skipSmallImages(w, h)) return CV_HAL_ERROR_NOT_IMPLEMENTED; if (depth != CV_8U || sdepth != CV_32S || c != NULL || d != NULL || cn != 1) return CV_HAL_ERROR_NOT_IMPLEMENTED; refineStep(w, h, VX_DF_IMAGE_U8, astep); try { ivx::Context ctx = getOpenVXHALContext(); ivx::Image ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(w, h, 1, (vx_int32)astep), const_cast(a)), ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U32, ivx::Image::createAddressing(w, h, 4, (vx_int32)bstep), (unsigned int *)(b + bstep + sizeof(unsigned int))); ivx::IVX_CHECK_STATUS(vxuIntegralImage(ctx, ia, ib)); std::memset(b, 0, (w + 1) * sizeof(unsigned int)); b += bstep; for (int i = 0; i < h; i++, b += bstep) { *((unsigned int*)b) = 0; } } catch (ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } int ovx_hal_meanStdDev(const uchar* src_data, size_t src_step, int width, int height, int src_type, double* mean_val, double* stddev_val, uchar* mask, size_t mask_step) { (void)mask_step; if (src_type != CV_8UC1 || mask) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } if (skipSmallImages(width, height)) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } if (src_step == 0) { src_step = (int)width; } try { ivx::Context ctx = getOpenVXHALContext(); #ifndef VX_VERSION_1_1 if (ctx.vendorID() == VX_ID_KHRONOS) return false; // Do not use OpenVX meanStdDev estimation for sample 1.0.1 implementation due to lack of accuracy #endif ivx::Image ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(width, height, 1, (vx_int32)src_step), const_cast(src_data)); vx_float32 mean_temp, stddev_temp; ivx::IVX_CHECK_STATUS(vxuMeanStdDev(ctx, ia, &mean_temp, &stddev_temp)); if (mean_val) { mean_val[0] = mean_temp; } if (stddev_val) { stddev_val[0] = stddev_temp; } } catch (const ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (const ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } int ovx_hal_lut(const uchar *src_data, size_t src_step, size_t src_type, const uchar* lut_data, size_t lut_channel_size, size_t lut_channels, uchar *dst_data, size_t dst_step, int width, int height) { if (src_type != CV_8UC1 || lut_channels != 1 || lut_channel_size != 1) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } if (skipSmallImages(width, height)) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } try { ivx::Context ctx = getOpenVXHALContext(); ivx::Image ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(width, height, 1, (vx_int32)src_step), const_cast(src_data)); ivx::Image ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(width, height, 1, (vx_int32)dst_step), dst_data); ivx::LUT lut = ivx::LUT::create(ctx); lut.copyFrom(lut_data); ivx::IVX_CHECK_STATUS(vxuTableLookup(ctx, ia, lut, ib)); } catch (const ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (const ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } template <> inline bool skipSmallImages(int w, int h) { return w*h < 3840 * 2160; } int ovx_hal_minMaxIdxMaskStep(const uchar* src_data, size_t src_step, int width, int height, int depth, double* minVal, double* maxVal, int* minIdx, int* maxIdx, uchar* mask, size_t mask_step) { (void)mask_step; if ((depth != CV_8U && depth != CV_16S) || mask ) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } if (skipSmallImages(width, height)) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } if (src_step == 0) { src_step = (int)width; } try { ivx::Context ctx = getOpenVXHALContext(); ivx::Image ia = ivx::Image::createFromHandle(ctx, depth == CV_8U ? VX_DF_IMAGE_U8 : VX_DF_IMAGE_S16, ivx::Image::createAddressing(width, height, depth == CV_8U ? 1 : 2, (vx_int32)src_step), const_cast(src_data)); ivx::Scalar vxMinVal = ivx::Scalar::create(ctx, depth == CV_8U ? VX_TYPE_UINT8 : VX_TYPE_INT16, 0); ivx::Scalar vxMaxVal = ivx::Scalar::create(ctx, depth == CV_8U ? VX_TYPE_UINT8 : VX_TYPE_INT16, 0); ivx::Array vxMinInd, vxMaxInd; ivx::Scalar vxMinCount, vxMaxCount; if (minIdx) { vxMinInd = ivx::Array::create(ctx, VX_TYPE_COORDINATES2D, 1); vxMinCount = ivx::Scalar::create(ctx, VX_TYPE_UINT32, 0); } if (maxIdx) { vxMaxInd = ivx::Array::create(ctx, VX_TYPE_COORDINATES2D, 1); vxMaxCount = ivx::Scalar::create(ctx, VX_TYPE_UINT32, 0); } ivx::IVX_CHECK_STATUS(vxuMinMaxLoc(ctx, ia, vxMinVal, vxMaxVal, vxMinInd, vxMaxInd, vxMinCount, vxMaxCount)); if (minVal) { *minVal = depth == CV_8U ? vxMinVal.getValue() : vxMinVal.getValue(); } if (maxVal) { *maxVal = depth == CV_8U ? vxMaxVal.getValue() : vxMaxVal.getValue(); } if (minIdx) { if(vxMinCount.getValue()<1) throw ivx::RuntimeError(VX_ERROR_INVALID_VALUE, std::string(__func__) + "(): minimum value location not found"); vx_coordinates2d_t loc; vxMinInd.copyRangeTo(0, 1, &loc); minIdx[0] = loc.y; minIdx[1] = loc.x; } if (maxIdx) { if (vxMaxCount.getValue()<1) throw ivx::RuntimeError(VX_ERROR_INVALID_VALUE, std::string(__func__) + "(): maximum value location not found"); vx_coordinates2d_t loc; vxMaxInd.copyRangeTo(0, 1, &loc); maxIdx[0] = loc.y; maxIdx[1] = loc.x; } } catch (const ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (const ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } template <> inline bool skipSmallImages(int w, int h) { return w*h < 800 * 600; } int ovx_hal_FAST(const uchar* src_data, size_t src_step, int width, int height, uchar* keypoints_data, size_t* keypoints_count, int threshold, bool nonmax_suppression, int /*cv::FastFeatureDetector::DetectorType*/ dtype) { // Nonmax suppression is done differently in OpenCV than in OpenVX // 9/16 is the only supported mode in OpenVX if(nonmax_suppression || dtype != CV_HAL_TYPE_9_16) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } if (skipSmallImages(width, height)) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } try { ivx::Context context = getOpenVXHALContext(); ivx::Image img = ivx::Image::createFromHandle(context, VX_DF_IMAGE_U8, ivx::Image::createAddressing(width, height, 1, (vx_int32)src_step), const_cast(src_data)); ivx::Scalar vxthreshold = ivx::Scalar::create(context, threshold); vx_size capacity = width * height; ivx::Array corners = ivx::Array::create(context, VX_TYPE_KEYPOINT, capacity); ivx::Scalar numCorners = ivx::Scalar::create(context, 0); ivx::IVX_CHECK_STATUS(vxuFastCorners(context, img, vxthreshold, (vx_bool)nonmax_suppression, corners, numCorners)); size_t nPoints = numCorners.getValue(); std::vector vxCorners(nPoints); corners.copyTo(vxCorners); cvhalKeyPoint* keypoints = (cvhalKeyPoint*)keypoints_data; for(size_t i = 0; i < std::min(nPoints, *keypoints_count); i++) { //if nonmaxSuppression is false, vxCorners[i].strength is undefined keypoints[i].x = vxCorners[i].x; keypoints[i].y = vxCorners[i].y; keypoints[i].size = 7; keypoints[i].angle = -1; keypoints[i].response = vxCorners[i].strength; } *keypoints_count = std::min(nPoints, *keypoints_count); #ifdef VX_VERSION_1_1 //we should take user memory back before release //(it's not done automatically according to standard) img.swapHandle(); #endif } catch (const ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (const ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } template <> inline bool skipSmallImages(int w, int h) { return w*h < 1280 * 720; } int ovx_hal_medianBlur(const uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step, int width, int height, int depth, int cn, int ksize) { if (depth != CV_8U || cn != 1 #ifndef VX_VERSION_1_1 || ksize != 3 #endif ) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } if ( #ifdef VX_VERSION_1_1 ksize != 3 ? skipSmallImages(width, height) : #endif skipSmallImages(width, height) ) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } try { ivx::Context ctx = getOpenVXHALContext(); #ifdef VX_VERSION_1_1 if ((vx_size)ksize > ctx.nonlinearMaxDimension()) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } #endif ivx::Image ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(width, height, 1, (vx_int32)src_step), const_cast(src_data)); ivx::Image ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(width, height, 1, (vx_int32)(dst_step)), dst_data); //ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments //since OpenVX standard says nothing about thread-safety for now ivx::border_t prevBorder = ctx.immediateBorder(); ctx.setImmediateBorder(VX_BORDER_REPLICATE); #ifdef VX_VERSION_1_1 if (ksize == 3) #endif { ivx::IVX_CHECK_STATUS(vxuMedian3x3(ctx, ia, ib)); } #ifdef VX_VERSION_1_1 else { ivx::Matrix mtx; if(ksize == 5) mtx = ivx::Matrix::createFromPattern(ctx, VX_PATTERN_BOX, ksize, ksize); else { vx_size supportedSize; ivx::IVX_CHECK_STATUS(vxQueryContext(ctx, VX_CONTEXT_NONLINEAR_MAX_DIMENSION, &supportedSize, sizeof(supportedSize))); if ((vx_size)ksize > supportedSize) { ctx.setImmediateBorder(prevBorder); return false; } std::vector mtx_data(ksize*ksize, 255); mtx = ivx::Matrix::create(ctx, VX_TYPE_UINT8, ksize, ksize); mtx.copyFrom(&mtx_data[0]); } ivx::IVX_CHECK_STATUS(vxuNonLinearFilter(ctx, VX_NONLINEAR_FILTER_MEDIAN, ia, mtx, ib)); } #endif ctx.setImmediateBorder(prevBorder); } catch (const ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (const ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } template <> inline bool skipSmallImages(int w, int h) { return w*h < 320 * 240; } int ovx_hal_sobel(const uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step, int width, int height, int src_depth, int dst_depth, int cn, int margin_left, int margin_top, int margin_right, int margin_bottom, int dx, int dy, int ksize, double scale, double delta, int border_type) { if (cn != 1 || src_depth != CV_8U || dst_depth != CV_16S || ksize != 3 || scale != 1.0 || delta != 0.0 || (dx | dy) != 1 || (dx + dy) != 1 || width < ksize || height < ksize) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } // ~BORDER_ISOLATED case not supported for now if (margin_left != 0 || margin_top != 0 || margin_right != 0 || margin_bottom != 0) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } if (skipSmallImages(width, height)) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } vx_enum border; switch (border_type) { case CV_HAL_BORDER_CONSTANT: border = VX_BORDER_CONSTANT; break; case CV_HAL_BORDER_REPLICATE: // border = VX_BORDER_REPLICATE; // break; default: return CV_HAL_ERROR_NOT_IMPLEMENTED; } try { ivx::Context ctx = getOpenVXHALContext(); //if ((vx_size)ksize > ctx.convolutionMaxDimension()) // return false; ivx::Image ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(width, height, 1, (vx_int32)(src_step)), const_cast(src_data)); ivx::Image ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_S16, ivx::Image::createAddressing(width, height, 2, (vx_int32)dst_step), dst_data); //ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments //since OpenVX standard says nothing about thread-safety for now ivx::border_t prevBorder = ctx.immediateBorder(); ctx.setImmediateBorder(border, (vx_uint8)(0)); if(dx) ivx::IVX_CHECK_STATUS(vxuSobel3x3(ctx, ia, ib, NULL)); else ivx::IVX_CHECK_STATUS(vxuSobel3x3(ctx, ia, NULL, ib)); ctx.setImmediateBorder(prevBorder); } catch (const ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (const ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } template <> inline bool skipSmallImages(int w, int h) { return w*h < 640 * 480; } int ovx_hal_canny(const uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step, int width, int height, int cn, double lowThreshold, double highThreshold, int ksize, bool L2gradient) { if (cn != 1 || width <= ksize || height <= ksize) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } if (skipSmallImages(width, height)) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } ivx::Context context = getOpenVXHALContext(); try { ivx::Image _src = ivx::Image::createFromHandle(context, VX_DF_IMAGE_U8, ivx::Image::createAddressing(width, height, 1, (vx_int32)src_step), const_cast(src_data)); ivx::Image _dst = ivx::Image::createFromHandle( context, VX_DF_IMAGE_U8, ivx::Image::createAddressing(width, height, 1, (vx_int32)dst_step), dst_data); ivx::Threshold threshold = ivx::Threshold::createRange(context, VX_TYPE_UINT8, (vx_int32)lowThreshold, (vx_int32)highThreshold); #if 0 // the code below is disabled because vxuCannyEdgeDetector() // ignores context attribute VX_CONTEXT_IMMEDIATE_BORDER // FIXME: may fail in multithread case border_t prevBorder = context.immediateBorder(); context.setImmediateBorder(VX_BORDER_REPLICATE); IVX_CHECK_STATUS( vxuCannyEdgeDetector(context, _src, threshold, ksize, (L2gradient ? VX_NORM_L2 : VX_NORM_L1), _dst) ); context.setImmediateBorder(prevBorder); #else // alternative code without vxuCannyEdgeDetector() ivx::Graph graph = ivx::Graph::create(context); ivx::Node node = ivx::Node(vxCannyEdgeDetectorNode(graph, _src, threshold, ksize, (L2gradient ? VX_NORM_L2 : VX_NORM_L1), _dst) ); node.setBorder(VX_BORDER_REPLICATE); graph.verify(); graph.process(); #endif #ifdef VX_VERSION_1_1 _src.swapHandle(); _dst.swapHandle(); #endif } catch (const ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (const ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } // static bool openvx_pyrDown( InputArray _src, OutputArray _dst, const Size& _dsz, int borderType ) int ovx_hal_pyrdown(const uchar* src_data, size_t src_step, int src_width, int src_height, uchar* dst_data, size_t dst_step, int dst_width, int dst_height, int depth, int cn, int border_type) { if (depth != CV_8U || border_type != CV_HAL_BORDER_REPLICATE) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } if (skipSmallImages(src_width, src_height)) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } // The only border mode which is supported by both cv::pyrDown() and OpenVX // and produces predictable results ivx::border_t borderMode; borderMode.mode = VX_BORDER_REPLICATE; try { ivx::Context context = getOpenVXHALContext(); if(context.vendorID() == VX_ID_KHRONOS) { // This implementation performs floor-like rounding // (OpenCV uses floor(x+0.5)-like rounding) // and ignores border mode (and loses 1px size border) return CV_HAL_ERROR_NOT_IMPLEMENTED; } ivx::Image srcImg = ivx::Image::createFromHandle(context, ivx::Image::matTypeToFormat(CV_8UC(cn)), ivx::Image::createAddressing(src_width, src_height, 1, (vx_int32)src_step), const_cast(src_data)); ivx::Image dstImg = ivx::Image::createFromHandle(context, ivx::Image::matTypeToFormat(CV_8UC(cn)), ivx::Image::createAddressing(dst_width, dst_height, 1, (vx_int32)dst_step), dst_data); ivx::Scalar kernelSize = ivx::Scalar::create(context, 5); ivx::Graph graph = ivx::Graph::create(context); ivx::Node halfNode = ivx::Node::create(graph, VX_KERNEL_HALFSCALE_GAUSSIAN, srcImg, dstImg, kernelSize); halfNode.setBorder(borderMode); graph.verify(); graph.process(); #ifdef VX_VERSION_1_1 //we should take user memory back before release //(it's not done automatically according to standard) srcImg.swapHandle(); dstImg.swapHandle(); #endif } catch (const ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (const ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } template <> inline bool skipSmallImages(int w, int h) { return w*h < 640 * 480; } int ovx_hal_boxFilter(const uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step, int width, int height, int src_depth, int dst_depth, int cn, int margin_left, int margin_top, int margin_right, int margin_bottom, size_t ksize_width, size_t ksize_height, int anchor_x, int anchor_y, bool normalize, int border_type) { if (src_depth != CV_8U || cn != 1 || ksize_width != 3 || ksize_height != 3 || dst_depth != CV_8U || (anchor_x >= 0 && anchor_x != 1) || (anchor_y >= 0 && anchor_y != 1) || !normalize) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } // ~BORDER_ISOLATED case not supported for now if (margin_left != 0 || margin_top != 0 || margin_right != 0 || margin_bottom != 0) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } if(skipSmallImages(width, height)) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } vx_enum border; switch (border_type) { case CV_HAL_BORDER_CONSTANT: border = VX_BORDER_CONSTANT; break; case CV_HAL_BORDER_REPLICATE: border = VX_BORDER_REPLICATE; break; default: return false; } try { ivx::Context ctx = getOpenVXHALContext(); ivx::Image ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(width, height, 1, (vx_int32)src_step), const_cast(src_data)); ivx::Image ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(width, height, 1, (vx_int32)dst_step), dst_data); //ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments //since OpenVX standard says nothing about thread-safety for now ivx::border_t prevBorder = ctx.immediateBorder(); ctx.setImmediateBorder(border, (vx_uint8)(0)); ivx::IVX_CHECK_STATUS(vxuBox3x3(ctx, ia, ib)); ctx.setImmediateBorder(prevBorder); } catch (const ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (const ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } int ovx_hal_equalize_hist(const uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step, int width, int height) { if (skipSmallImages(width, height)) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } try { ivx::Context context = getOpenVXHALContext(); ivx::Image srcImage = ivx::Image::createFromHandle(context, VX_DF_IMAGE_U8, ivx::Image::createAddressing(width, height, 1, (vx_int32)src_step), const_cast(src_data)); ivx::Image dstImage = ivx::Image::createFromHandle(context, VX_DF_IMAGE_U8, ivx::Image::createAddressing(width, height, 1, (vx_int32)dst_step), dst_data); ivx::IVX_CHECK_STATUS(vxuEqualizeHist(context, srcImage, dstImage)); #ifdef VX_VERSION_1_1 //we should take user memory back before release //(it's not done automatically according to standard) srcImage.swapHandle(); dstImage.swapHandle(); #endif } catch (const ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (const ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } int ovx_hal_gaussianBlur(const uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step, int width, int height, int depth, int cn, size_t margin_left, size_t margin_top, size_t margin_right, size_t margin_bottom, size_t ksize_width, size_t ksize_height, double sigmaX, double sigmaY, int border_type) { if (sigmaY <= 0) sigmaY = sigmaX; // automatic detection of kernel size from sigma if (ksize_width <= 0 && sigmaX > 0) ksize_width = (vx_int32)(sigmaX*6 + 1) | 1; if (ksize_height <= 0 && sigmaY > 0) ksize_height = (vx_int32)(sigmaY*6 + 1) | 1; if (depth != CV_8U || cn != 1 || width < 3 || height < 3 || ksize_width != 3 || ksize_height != 3) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } sigmaX = std::max(sigmaX, 0.); sigmaY = std::max(sigmaY, 0.); if (!(sigmaX == 0.0 || (sigmaX - 0.8) < DBL_EPSILON) || !(sigmaY == 0.0 || (sigmaY - 0.8) < DBL_EPSILON)) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } // ~BORDER_ISOLATED case not supported for now if (margin_left != 0 || margin_top != 0 || margin_right != 0 || margin_bottom != 0) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } if (skipSmallImages(width, height)) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } vx_enum border; switch (border_type) { case CV_HAL_BORDER_CONSTANT: border = VX_BORDER_CONSTANT; break; case CV_HAL_BORDER_REPLICATE: border = VX_BORDER_REPLICATE; break; default: return false; } try { ivx::Context ctx = getOpenVXHALContext(); ivx::Image ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(width, height, 1, (vx_int32)src_step), const_cast(src_data)); ivx::Image ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(width, height, 1, (vx_int32)dst_step), dst_data); //ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments //since OpenVX standard says nothing about thread-safety for now ivx::border_t prevBorder = ctx.immediateBorder(); ctx.setImmediateBorder(border, (vx_uint8)(0)); ivx::IVX_CHECK_STATUS(vxuGaussian3x3(ctx, ia, ib)); ctx.setImmediateBorder(prevBorder); } catch (const ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (const ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } int ovx_hal_remap32f(int src_type, const uchar *src_data, size_t src_step, int src_width, int src_height, uchar *dst_data, size_t dst_step, int dst_width, int dst_height, float* mapx, size_t mapx_step, float* mapy, size_t mapy_step, int interpolation, int border_type, const double border_value[4]) { if (src_type != CV_8UC1 || border_type != CV_HAL_BORDER_CONSTANT || (interpolation & CV_HAL_WARP_RELATIVE_MAP)) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } if (skipSmallImages(src_width, src_height)) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } vx_interpolation_type_e inter_type; switch (interpolation) { case CV_HAL_INTER_LINEAR: #if VX_VERSION > VX_VERSION_1_0 inter_type = VX_INTERPOLATION_BILINEAR; #else inter_type = VX_INTERPOLATION_TYPE_BILINEAR; #endif break; case CV_HAL_INTER_NEAREST: /* NEAREST_NEIGHBOR mode disabled since OpenCV round half to even while OpenVX sample implementation round half up #if VX_VERSION > VX_VERSION_1_0 inter_type = VX_INTERPOLATION_NEAREST_NEIGHBOR; #else inter_type = VX_INTERPOLATION_TYPE_NEAREST_NEIGHBOR; #endif if (!map1.empty()) for (int y = 0; y < map1.rows; ++y) { float* line = map1.ptr(y); for (int x = 0; x < map1.cols; ++x) line[x] = cvRound(line[x]); } if (!map2.empty()) for (int y = 0; y < map2.rows; ++y) { float* line = map2.ptr(y); for (int x = 0; x < map2.cols; ++x) line[x] = cvRound(line[x]); } break; */ case CV_HAL_INTER_AREA://AREA interpolation mode is unsupported default: return CV_HAL_ERROR_NOT_IMPLEMENTED; } try { ivx::Context ctx = getOpenVXHALContext(); ivx::Image ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(src_width, src_height, 1, (vx_int32)src_step), const_cast(src_data)); ivx::Image ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(dst_width, dst_height, 1, (vx_int32)dst_step), dst_data); //ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments //since OpenVX standard says nothing about thread-safety for now ivx::border_t prevBorder = ctx.immediateBorder(); ctx.setImmediateBorder(VX_BORDER_CONSTANT, (vx_uint8)(border_value[0])); ivx::Remap map = ivx::Remap::create(ctx, src_width, src_height, dst_width, dst_height); if (!mapx) map.setMappings(mapy, mapy_step); else if (!mapy) map.setMappings(mapx, mapx_step); else map.setMappings(mapx, mapx_step, mapy, mapy_step); ivx::IVX_CHECK_STATUS(vxuRemap(ctx, ia, map, inter_type, ib)); #ifdef VX_VERSION_1_1 ib.swapHandle(); ia.swapHandle(); #endif ctx.setImmediateBorder(prevBorder); } catch (const ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (const ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; } #define IMPL_OPENVX_TOZERO 1 int ovx_hal_threshold(const uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step, int width, int height, int depth, int cn, double thresh, double maxValue, int thresholdType) { if(depth != CV_8U) { return CV_HAL_ERROR_NOT_IMPLEMENTED; } int trueVal, falseVal; switch (thresholdType) { case CV_HAL_THRESH_BINARY: #ifndef VX_VERSION_1_1 if (maxValue != 255) return CV_HAL_ERROR_NOT_IMPLEMENTED; #endif trueVal = maxValue; falseVal = 0; break; case CV_HAL_THRESH_TOZERO: #if IMPL_OPENVX_TOZERO trueVal = 255; falseVal = 0; break; #endif case CV_HAL_THRESH_BINARY_INV: #ifdef VX_VERSION_1_1 trueVal = 0; falseVal = maxValue; break; #endif case CV_HAL_THRESH_TOZERO_INV: #ifdef VX_VERSION_1_1 #if IMPL_OPENVX_TOZERO trueVal = 0; falseVal = 255; break; #endif #endif case CV_HAL_THRESH_TRUNC: default: return CV_HAL_ERROR_NOT_IMPLEMENTED; } try { ivx::Context ctx = getOpenVXHALContext(); ivx::Threshold thh = ivx::Threshold::createBinary(ctx, VX_TYPE_UINT8, thresh); thh.setValueTrue(trueVal); thh.setValueFalse(falseVal); ivx::Image ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(width*cn, height, 1, (vx_int32)src_step), const_cast(src_data)); ivx::Image ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(width*cn, height, 1, (vx_int32)dst_step), dst_data); ivx::IVX_CHECK_STATUS(vxuThreshold(ctx, ia, thh, ib)); #if IMPL_OPENVX_TOZERO if (thresholdType == CV_HAL_THRESH_TOZERO || thresholdType == CV_HAL_THRESH_TOZERO_INV) { ivx::Image ic = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, ivx::Image::createAddressing(width*cn, height, 1, (vx_int32)dst_step), dst_data); ivx::IVX_CHECK_STATUS(vxuAnd(ctx, ib, ia, ic)); } #endif } catch (const ivx::RuntimeError & e) { PRINT_HALERR_MSG(runtime); return CV_HAL_ERROR_UNKNOWN; } catch (const ivx::WrapperError & e) { PRINT_HALERR_MSG(wrapper); return CV_HAL_ERROR_UNKNOWN; } return CV_HAL_ERROR_OK; }