/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Niko Li, newlife20080214@gmail.com // Jia Haipeng, jiahaipeng95@gmail.com // Shengen Yan, yanshengen@gmail.com // Jiang Liyuan, lyuan001.good@163.com // Rock Li, Rock.Li@amd.com // Wu Zailong, bullet@yeah.net // Xu Pang, pangxu010@163.com // Sen Liu, swjtuls1987@126.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #ifdef HAVE_OPENCL using namespace cv; using namespace testing; using namespace std; static MatType noType = -1; ///////////////////////////////////////////////////////////////////////////////////////////////// // warpAffine & warpPerspective PARAM_TEST_CASE(WarpTestBase, MatType, Interpolation, bool, bool) { int type, interpolation; Size dsize; bool useRoi, mapInverse; Mat src, dst_whole, src_roi, dst_roi; ocl::oclMat gsrc_whole, gsrc_roi, gdst_whole, gdst_roi; virtual void SetUp() { type = GET_PARAM(0); interpolation = GET_PARAM(1); mapInverse = GET_PARAM(2); useRoi = GET_PARAM(3); if (mapInverse) interpolation |= WARP_INVERSE_MAP; } void random_roi() { dsize = randomSize(1, MAX_VALUE); Size roiSize = randomSize(1, MAX_VALUE); Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0); randomSubMat(src, src_roi, roiSize, srcBorder, type, -MAX_VALUE, MAX_VALUE); Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0); randomSubMat(dst_whole, dst_roi, dsize, dstBorder, type, -MAX_VALUE, MAX_VALUE); generateOclMat(gsrc_whole, gsrc_roi, src, roiSize, srcBorder); generateOclMat(gdst_whole, gdst_roi, dst_whole, dsize, dstBorder); } void Near(double threshold = 0.0) { Mat whole, roi; gdst_whole.download(whole); gdst_roi.download(roi); EXPECT_MAT_NEAR(dst_whole, whole, threshold); EXPECT_MAT_NEAR(dst_roi, roi, threshold); } }; /////warpAffine typedef WarpTestBase WarpAffine; OCL_TEST_P(WarpAffine, Mat) { for (int j = 0; j < LOOP_TIMES; j++) { random_roi(); Mat M = getRotationMatrix2D(Point2f(src_roi.cols / 2.0f, src_roi.rows / 2.0f), rng.uniform(-180.f, 180.f), rng.uniform(0.4f, 2.0f)); warpAffine(src_roi, dst_roi, M, dsize, interpolation); ocl::warpAffine(gsrc_roi, gdst_roi, M, dsize, interpolation); Near(1.0); } } // warpPerspective typedef WarpTestBase WarpPerspective; OCL_TEST_P(WarpPerspective, Mat) { for (int j = 0; j < LOOP_TIMES; j++) { random_roi(); float cols = static_cast(src_roi.cols), rows = static_cast(src_roi.rows); float cols2 = cols / 2.0f, rows2 = rows / 2.0f; Point2f sp[] = { Point2f(0.0f, 0.0f), Point2f(cols, 0.0f), Point2f(0.0f, rows), Point2f(cols, rows) }; Point2f dp[] = { Point2f(rng.uniform(0.0f, cols2), rng.uniform(0.0f, rows2)), Point2f(rng.uniform(cols2, cols), rng.uniform(0.0f, rows2)), Point2f(rng.uniform(0.0f, cols2), rng.uniform(rows2, rows)), Point2f(rng.uniform(cols2, cols), rng.uniform(rows2, rows)) }; Mat M = getPerspectiveTransform(sp, dp); warpPerspective(src_roi, dst_roi, M, dsize, interpolation); ocl::warpPerspective(gsrc_roi, gdst_roi, M, dsize, interpolation); Near(1.0); } } // buildWarpPerspectiveMaps PARAM_TEST_CASE(BuildWarpPerspectiveMaps, bool, bool) { bool useRoi, mapInverse; Size dsize; Mat xmap_whole, ymap_whole, xmap_roi, ymap_roi; ocl::oclMat gxmap_whole, gymap_whole, gxmap_roi, gymap_roi; void SetUp() { mapInverse = GET_PARAM(0); useRoi = GET_PARAM(1); } void random_roi() { dsize = randomSize(1, MAX_VALUE); Border xmapBorder = randomBorder(0, useRoi ? MAX_VALUE : 0); randomSubMat(xmap_whole, xmap_roi, dsize, xmapBorder, CV_32FC1, -MAX_VALUE, MAX_VALUE); Border ymapBorder = randomBorder(0, useRoi ? MAX_VALUE : 0); randomSubMat(ymap_whole, ymap_roi, dsize, ymapBorder, CV_32FC1, -MAX_VALUE, MAX_VALUE); generateOclMat(gxmap_whole, gxmap_roi, xmap_whole, dsize, xmapBorder); generateOclMat(gymap_whole, gymap_roi, ymap_whole, dsize, ymapBorder); } void Near(double threshold = 0.0) { Mat whole, roi; gxmap_whole.download(whole); gxmap_roi.download(roi); EXPECT_MAT_NEAR(xmap_whole, whole, threshold); EXPECT_MAT_NEAR(xmap_roi, roi, threshold); } void Near1(double threshold = 0.0) { Mat whole, roi; gymap_whole.download(whole); gymap_roi.download(roi); EXPECT_MAT_NEAR(ymap_whole, whole, threshold); EXPECT_MAT_NEAR(ymap_roi, roi, threshold); } }; static void buildWarpPerspectiveMaps(const Mat &M, bool inverse, Size dsize, Mat &xmap, Mat &ymap) { CV_Assert(M.rows == 3 && M.cols == 3); CV_Assert(dsize.area() > 0); xmap.create(dsize, CV_32FC1); ymap.create(dsize, CV_32FC1); float coeffs[3 * 3]; Mat coeffsMat(3, 3, CV_32F, (void *)coeffs); if (inverse) M.convertTo(coeffsMat, coeffsMat.type()); else { cv::Mat iM; invert(M, iM); iM.convertTo(coeffsMat, coeffsMat.type()); } for (int y = 0; y < dsize.height; ++y) { float * const xmap_ptr = xmap.ptr(y); float * const ymap_ptr = ymap.ptr(y); for (int x = 0; x < dsize.width; ++x) { float coeff = 1.0f / (x * coeffs[6] + y * coeffs[7] + coeffs[8]); xmap_ptr[x] = (x * coeffs[0] + y * coeffs[1] + coeffs[2]) * coeff; ymap_ptr[x] = (x * coeffs[3] + y * coeffs[4] + coeffs[5]) * coeff; } } } OCL_TEST_P(BuildWarpPerspectiveMaps, Mat) { for (int j = 0; j < LOOP_TIMES; j++) { random_roi(); float cols = static_cast(MAX_VALUE), rows = static_cast(MAX_VALUE); float cols2 = cols / 2.0f, rows2 = rows / 2.0f; Point2f sp[] = { Point2f(0.0f, 0.0f), Point2f(cols, 0.0f), Point2f(0.0f, rows), Point2f(cols, rows) }; Point2f dp[] = { Point2f(rng.uniform(0.0f, cols2), rng.uniform(0.0f, rows2)), Point2f(rng.uniform(cols2, cols), rng.uniform(0.0f, rows2)), Point2f(rng.uniform(0.0f, cols2), rng.uniform(rows2, rows)), Point2f(rng.uniform(cols2, cols), rng.uniform(rows2, rows)) }; Mat M = getPerspectiveTransform(sp, dp); buildWarpPerspectiveMaps(M, mapInverse, dsize, xmap_roi, ymap_roi); ocl::buildWarpPerspectiveMaps(M, mapInverse, dsize, gxmap_roi, gymap_roi); Near(5e-3); Near1(5e-3); } } ///////////////////////////////////////////////////////////////////////////////////////////////// // remap PARAM_TEST_CASE(Remap, MatDepth, Channels, pair, Border, bool) { int srcType, map1Type, map2Type; int borderType; bool useRoi; Scalar val; Mat src, src_roi; Mat dst, dst_roi; Mat map1, map1_roi; Mat map2, map2_roi; // ocl mat with roi ocl::oclMat gsrc, gsrc_roi; ocl::oclMat gdst, gdst_roi; ocl::oclMat gmap1, gmap1_roi; ocl::oclMat gmap2, gmap2_roi; virtual void SetUp() { srcType = CV_MAKE_TYPE(GET_PARAM(0), GET_PARAM(1)); map1Type = GET_PARAM(2).first; map2Type = GET_PARAM(2).second; borderType = GET_PARAM(3); useRoi = GET_PARAM(4); } void random_roi() { val = randomScalar(-MAX_VALUE, MAX_VALUE); Size srcROISize = randomSize(1, MAX_VALUE); Size dstROISize = randomSize(1, MAX_VALUE); Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0); randomSubMat(src, src_roi, srcROISize, srcBorder, srcType, 5, 256); Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0); randomSubMat(dst, dst_roi, dstROISize, dstBorder, srcType, -MAX_VALUE, MAX_VALUE); int mapMaxValue = MAX_VALUE << 2; Border map1Border = randomBorder(0, useRoi ? MAX_VALUE : 0); randomSubMat(map1, map1_roi, dstROISize, map1Border, map1Type, -mapMaxValue, mapMaxValue); Border map2Border = randomBorder(0, useRoi ? MAX_VALUE : 0); if (map2Type != noType) { int mapMinValue = -mapMaxValue; if (map2Type == CV_16UC1 || map2Type == CV_16SC1) mapMinValue = 0, mapMaxValue = INTER_TAB_SIZE2; randomSubMat(map2, map2_roi, dstROISize, map2Border, map2Type, mapMinValue, mapMaxValue); } generateOclMat(gsrc, gsrc_roi, src, srcROISize, srcBorder); generateOclMat(gdst, gdst_roi, dst, dstROISize, dstBorder); generateOclMat(gmap1, gmap1_roi, map1, dstROISize, map1Border); if (noType != map2Type) generateOclMat(gmap2, gmap2_roi, map2, dstROISize, map2Border); } void Near(double threshold = 0.0) { Mat whole, roi; gdst.download(whole); gdst_roi.download(roi); EXPECT_MAT_NEAR(dst, whole, threshold); EXPECT_MAT_NEAR(dst_roi, roi, threshold); } }; typedef Remap Remap_INTER_NEAREST; OCL_TEST_P(Remap_INTER_NEAREST, Mat) { for (int j = 0; j < LOOP_TIMES; j++) { random_roi(); remap(src_roi, dst_roi, map1_roi, map2_roi, INTER_NEAREST, borderType, val); ocl::remap(gsrc_roi, gdst_roi, gmap1_roi, gmap2_roi, INTER_NEAREST, borderType, val); Near(1.0); } } typedef Remap Remap_INTER_LINEAR; OCL_TEST_P(Remap_INTER_LINEAR, Mat) { for (int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::remap(src_roi, dst_roi, map1_roi, map2_roi, INTER_LINEAR, borderType, val); ocl::remap(gsrc_roi, gdst_roi, gmap1_roi, gmap2_roi, INTER_LINEAR, borderType, val); Near(2.0); } } ///////////////////////////////////////////////////////////////////////////////////////////////// // resize PARAM_TEST_CASE(Resize, MatType, double, double, Interpolation, bool) { int type, interpolation; double fx, fy; bool useRoi; Mat src, dst_whole, src_roi, dst_roi; ocl::oclMat gsrc_whole, gsrc_roi, gdst_whole, gdst_roi; virtual void SetUp() { type = GET_PARAM(0); fx = GET_PARAM(1); fy = GET_PARAM(2); interpolation = GET_PARAM(3); useRoi = GET_PARAM(4); } void random_roi() { CV_Assert(fx > 0 && fy > 0); Size srcRoiSize = randomSize(1, MAX_VALUE), dstRoiSize; dstRoiSize.width = cvRound(srcRoiSize.width * fx); dstRoiSize.height = cvRound(srcRoiSize.height * fy); if (dstRoiSize.area() == 0) return random_roi(); Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0); randomSubMat(src, src_roi, srcRoiSize, srcBorder, type, -MAX_VALUE, MAX_VALUE); Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0); randomSubMat(dst_whole, dst_roi, dstRoiSize, dstBorder, type, -MAX_VALUE, MAX_VALUE); generateOclMat(gsrc_whole, gsrc_roi, src, srcRoiSize, srcBorder); generateOclMat(gdst_whole, gdst_roi, dst_whole, dstRoiSize, dstBorder); } void Near(double threshold = 0.0) { Mat whole, roi; gdst_whole.download(whole); gdst_roi.download(roi); EXPECT_MAT_NEAR(dst_whole, whole, threshold); EXPECT_MAT_NEAR(dst_roi, roi, threshold); } }; OCL_TEST_P(Resize, Mat) { for (int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::resize(src_roi, dst_roi, Size(), fx, fy, interpolation); ocl::resize(gsrc_roi, gdst_roi, Size(), fx, fy, interpolation); Near(1.0); } } ///////////////////////////////////////////////////////////////////////////////////// INSTANTIATE_TEST_CASE_P(ImgprocWarp, WarpAffine, Combine( Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4), Values((Interpolation)INTER_NEAREST, (Interpolation)INTER_LINEAR, (Interpolation)INTER_CUBIC), Bool(), Bool())); INSTANTIATE_TEST_CASE_P(ImgprocWarp, WarpPerspective, Combine( Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4), Values((Interpolation)INTER_NEAREST, (Interpolation)INTER_LINEAR, (Interpolation)INTER_CUBIC), Bool(), Bool())); INSTANTIATE_TEST_CASE_P(ImgprocWarp, BuildWarpPerspectiveMaps, Combine(Bool(), Bool())); INSTANTIATE_TEST_CASE_P(ImgprocWarp, Remap_INTER_LINEAR, Combine( Values(CV_8U, CV_16U, CV_16S, CV_32F, CV_64F), Values(1, 2, 3, 4), Values(pair((MatType)CV_32FC1, (MatType)CV_32FC1), pair((MatType)CV_16SC2, (MatType)CV_16UC1), pair((MatType)CV_32FC2, noType)), Values((Border)BORDER_CONSTANT, (Border)BORDER_REPLICATE, (Border)BORDER_WRAP, (Border)BORDER_REFLECT, (Border)BORDER_REFLECT_101), Bool())); INSTANTIATE_TEST_CASE_P(ImgprocWarp, Remap_INTER_NEAREST, Combine( Values(CV_8U, CV_16U, CV_16S, CV_32F, CV_64F), Values(1, 2, 3, 4), Values(pair((MatType)CV_32FC1, (MatType)CV_32FC1), pair((MatType)CV_32FC2, noType), pair((MatType)CV_16SC2, (MatType)CV_16UC1), pair((MatType)CV_16SC2, noType)), Values((Border)BORDER_CONSTANT, (Border)BORDER_REPLICATE, (Border)BORDER_WRAP, (Border)BORDER_REFLECT, (Border)BORDER_REFLECT_101), Bool())); INSTANTIATE_TEST_CASE_P(ImgprocWarpResize, Resize, Combine( Values((MatType)CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4), Values(0.7, 0.4, 2.0), Values(0.3, 0.6, 2.0), Values((Interpolation)INTER_NEAREST, (Interpolation)INTER_LINEAR), Bool())); INSTANTIATE_TEST_CASE_P(ImgprocWarpResizeArea, Resize, Combine( Values((MatType)CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4), Values(0.7, 0.4, 0.5), Values(0.3, 0.6, 0.5), Values((Interpolation)INTER_AREA), Bool())); #endif // HAVE_OPENCL