/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_PRECOMP_H__ #define __OPENCV_PRECOMP_H__ #include "opencv2/core/utility.hpp" #include "opencv2/core/private.hpp" #include "opencv2/calib3d.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/features2d.hpp" #include "opencv2/core/ocl.hpp" #ifdef HAVE_TEGRA_OPTIMIZATION #include "opencv2/calib3d/calib3d_tegra.hpp" #else #define GET_OPTIMIZED(func) (func) #endif namespace cv { /** * Compute the number of iterations given the confidence, outlier ratio, number * of model points and the maximum iteration number. * * @param p confidence value * @param ep outlier ratio * @param modelPoints number of model points required for estimation * @param maxIters maximum number of iterations * @return * \f[ * \frac{\ln(1-p)}{\ln\left(1-(1-ep)^\mathrm{modelPoints}\right)} * \f] * * If the computed number of iterations is larger than maxIters, then maxIters is returned. */ int RANSACUpdateNumIters( double p, double ep, int modelPoints, int maxIters ); class CV_EXPORTS LMSolver : public Algorithm { public: class CV_EXPORTS Callback { public: virtual ~Callback() {} virtual bool compute(InputArray param, OutputArray err, OutputArray J) const = 0; }; virtual void setCallback(const Ptr& cb) = 0; virtual int run(InputOutputArray _param0) const = 0; }; CV_EXPORTS Ptr createLMSolver(const Ptr& cb, int maxIters); class CV_EXPORTS PointSetRegistrator : public Algorithm { public: class CV_EXPORTS Callback { public: virtual ~Callback() {} virtual int runKernel(InputArray m1, InputArray m2, OutputArray model) const = 0; virtual void computeError(InputArray m1, InputArray m2, InputArray model, OutputArray err) const = 0; virtual bool checkSubset(InputArray, InputArray, int) const { return true; } }; virtual void setCallback(const Ptr& cb) = 0; virtual bool run(InputArray m1, InputArray m2, OutputArray model, OutputArray mask) const = 0; }; CV_EXPORTS Ptr createRANSACPointSetRegistrator(const Ptr& cb, int modelPoints, double threshold, double confidence=0.99, int maxIters=1000 ); CV_EXPORTS Ptr createLMeDSPointSetRegistrator(const Ptr& cb, int modelPoints, double confidence=0.99, int maxIters=1000 ); template inline int compressElems( T* ptr, const uchar* mask, int mstep, int count ) { int i, j; for( i = j = 0; i < count; i++ ) if( mask[i*mstep] ) { if( i > j ) ptr[j] = ptr[i]; j++; } return j; } static inline bool haveCollinearPoints( const Mat& m, int count ) { int j, k, i = count-1; const Point2f* ptr = m.ptr(); // check that the i-th selected point does not belong // to a line connecting some previously selected points // also checks that points are not too close to each other for( j = 0; j < i; j++ ) { double dx1 = ptr[j].x - ptr[i].x; double dy1 = ptr[j].y - ptr[i].y; for( k = 0; k < j; k++ ) { double dx2 = ptr[k].x - ptr[i].x; double dy2 = ptr[k].y - ptr[i].y; if( fabs(dx2*dy1 - dy2*dx1) <= FLT_EPSILON*(fabs(dx1) + fabs(dy1) + fabs(dx2) + fabs(dy2))) return true; } } return false; } } // namespace cv int checkChessboard(const cv::Mat & img, const cv::Size & size); int checkChessboardBinary(const cv::Mat & img, const cv::Size & size); #endif