/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the OpenCV Foundation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #include #define dprintf(x) #define print_matrix(x) namespace cv { using std::vector; #ifdef ALEX_DEBUG static void print_simplex_state(const Mat& c,const Mat& b,double v,const std::vector N,const std::vector B){ printf("\tprint simplex state\n"); printf("v=%g\n",v); printf("here c goes\n"); print_matrix(c); printf("non-basic: "); print(Mat(N)); printf("\n"); printf("here b goes\n"); print_matrix(b); printf("basic: "); print(Mat(B)); printf("\n"); } #else #define print_simplex_state(c,b,v,N,B) #endif /**Due to technical considerations, the format of input b and c is somewhat special: *both b and c should be one column bigger than corresponding b and c of linear problem and the leftmost column will be used internally by this procedure - it should not be cleaned before the call to procedure and may contain mess after it also initializes N and B and does not make any assumptions about their init values * @return SOLVELP_UNFEASIBLE if problem is unfeasible, 0 if feasible. */ static int initialize_simplex(Mat_& c, Mat_& b,double& v,vector& N,vector& B,vector& indexToRow); static inline void pivot(Mat_& c,Mat_& b,double& v,vector& N,vector& B,int leaving_index, int entering_index,vector& indexToRow); /**@return SOLVELP_UNBOUNDED means the problem is unbdd, SOLVELP_MULTI means multiple solutions, SOLVELP_SINGLE means one solution. */ static int inner_simplex(Mat_& c, Mat_& b,double& v,vector& N,vector& B,vector& indexToRow); static void swap_columns(Mat_& A,int col1,int col2); #define SWAP(type,a,b) {type tmp=(a);(a)=(b);(b)=tmp;} //return codes:-2 (no_sol - unbdd),-1(no_sol - unfsbl), 0(single_sol), 1(multiple_sol=>least_l2_norm) int solveLP(InputArray Func_, InputArray Constr_, OutputArray z_, double constr_eps) { dprintf(("call to solveLP\n")); //sanity check (size, type, no. of channels) CV_Assert(Func_.type()==CV_64FC1 || Func_.type()==CV_32FC1); CV_Assert(Constr_.type()==CV_64FC1 || Constr_.type()==CV_32FC1); CV_Assert((Func_.rows()==1 && (Constr_.cols()-Func_.cols()==1))|| (Func_.cols()==1 && (Constr_.cols()-Func_.rows()==1))); if (z_.fixedType()) CV_CheckType(z_.type(), z_.type() == CV_64FC1 || z_.type() == CV_32FC1 || z_.type() == CV_32SC1, ""); Mat Func = Func_.getMat(); Mat Constr = Constr_.getMat(); //copy arguments for we will shall modify them Mat_ bigC=Mat_(1,(Func.rows==1?Func.cols:Func.rows)+1), bigB=Mat_(Constr.rows,Constr.cols+1); if(Func.rows==1){ Func.convertTo(bigC.colRange(1,bigC.cols),CV_64FC1); }else{ Mat FuncT=Func.t(); FuncT.convertTo(bigC.colRange(1,bigC.cols),CV_64FC1); } Constr.convertTo(bigB.colRange(1,bigB.cols),CV_64FC1); double v=0; vector N,B; vector indexToRow; if(initialize_simplex(bigC,bigB,v,N,B,indexToRow)==SOLVELP_UNFEASIBLE){ return SOLVELP_UNFEASIBLE; } Mat_ c=bigC.colRange(1,bigC.cols), b=bigB.colRange(1,bigB.cols); int res=0; if((res=inner_simplex(c,b,v,N,B,indexToRow))==SOLVELP_UNBOUNDED){ return SOLVELP_UNBOUNDED; } //return the optimal solution Mat z(c.cols,1,CV_64FC1); MatIterator_ it=z.begin(); unsigned int nsize = (unsigned int)N.size(); for(int i=1;i<=c.cols;i++,it++){ if(indexToRow[i](indexToRow[i]-nsize,b.cols-1); } } z.copyTo(z_); //check constraints feasibility Mat prod = Constr(Rect(0, 0, Constr.cols - 1, Constr.rows)) * z; Mat constr_check = Constr.col(Constr.cols - 1) - prod; double min_value = 0.0; minMaxIdx(constr_check, &min_value); if (min_value < -constr_eps) { return SOLVELP_LOST; } return res; } int solveLP(InputArray Func, InputArray Constr, OutputArray z) { return solveLP(Func, Constr, z, 1e-12); } static int initialize_simplex(Mat_& c, Mat_& b,double& v,vector& N,vector& B,vector& indexToRow){ N.resize(c.cols); N[0]=0; for (std::vector::iterator it = N.begin()+1 ; it != N.end(); ++it){ *it=it[-1]+1; } B.resize(b.rows); B[0]=(int)N.size(); for (std::vector::iterator it = B.begin()+1 ; it != B.end(); ++it){ *it=it[-1]+1; } indexToRow.resize(c.cols+b.rows); indexToRow[0]=0; for (std::vector::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){ *it=it[-1]+1; } v=0; int k=0; { double min=DBL_MAX; for(int i=0;i=0){ N.erase(N.begin()); for (std::vector::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){ --(*it); } return 0; } Mat_ old_c=c.clone(); c=0; c(0,0)=-1; for(int i=0;i=nsize){ int iterator_offset=indexToRow[0]-nsize; if(b(iterator_offset,b.cols-1)>0){ return SOLVELP_UNFEASIBLE; } pivot(c,b,v,N,B,iterator_offset,0,indexToRow); } vector::iterator iterator; { int iterator_offset=indexToRow[0]; iterator=N.begin()+iterator_offset; std::iter_swap(iterator,N.begin()); SWAP(int,indexToRow[*iterator],indexToRow[0]); swap_columns(c,iterator_offset,0); swap_columns(b,iterator_offset,0); } dprintf(("after swaps\n")); print_simplex_state(c,b,v,N,B); //start from 1, because we ignore x_0 c=0; v=0; for(int I=1;I::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){ --(*it); } return 0; } static int inner_simplex(Mat_& c, Mat_& b,double& v,vector& N,vector& B,vector& indexToRow){ for(;;){ MatIterator_ pos_ptr; int e=-1,pos_ctr=0,min_var=INT_MAX; bool all_nonzero=true; for(pos_ptr=c.begin();pos_ptr!=c.end();pos_ptr++,pos_ctr++){ if(*pos_ptr==0){ all_nonzero=false; } if(*pos_ptr>0){ if(N[pos_ctr] min_row_ptr=b.begin(); for(MatIterator_ it=b.begin();it!=b.end();it+=b.cols,row_it++){ double myite=0; //check constraints, select the tightest one, reinforcing Bland's rule if((myite=it[e])>0){ double val=it[b.cols-1]/myite; if(val& c,Mat_& b,double& v,vector& N,vector& B, int leaving_index,int entering_index,vector& indexToRow){ double Coef=b(leaving_index,entering_index); for(int i=0;i& A,int col1,int col2){ for(int i=0;i