/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2014, Itseez, Inc, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencl_kernels_imgproc.hpp" #include "opencv2/core/hal/intrin.hpp" namespace cv { // Classical Hough Transform struct LinePolar { float rho; float angle; }; struct hough_cmp_gt { hough_cmp_gt(const int* _aux) : aux(_aux) {} inline bool operator()(int l1, int l2) const { return aux[l1] > aux[l2] || (aux[l1] == aux[l2] && l1 < l2); } const int* aux; }; /* Here image is an input raster; step is it's step; size characterizes it's ROI; rho and theta are discretization steps (in pixels and radians correspondingly). threshold is the minimum number of pixels in the feature for it to be a candidate for line. lines is the output array of (rho, theta) pairs. linesMax is the buffer size (number of pairs). Functions return the actual number of found lines. */ static void HoughLinesStandard( const Mat& img, float rho, float theta, int threshold, std::vector& lines, int linesMax, double min_theta, double max_theta ) { int i, j; float irho = 1 / rho; CV_Assert( img.type() == CV_8UC1 ); const uchar* image = img.ptr(); int step = (int)img.step; int width = img.cols; int height = img.rows; if (max_theta < min_theta ) { CV_Error( CV_StsBadArg, "max_theta must be greater than min_theta" ); } int numangle = cvRound((max_theta - min_theta) / theta); int numrho = cvRound(((width + height) * 2 + 1) / rho); #if defined HAVE_IPP && IPP_VERSION_X100 >= 810 && !IPP_DISABLE_HOUGH CV_IPP_CHECK() { IppiSize srcSize = { width, height }; IppPointPolar delta = { rho, theta }; IppPointPolar dstRoi[2] = {{(Ipp32f) -(width + height), (Ipp32f) min_theta},{(Ipp32f) (width + height), (Ipp32f) max_theta}}; int bufferSize; int nz = countNonZero(img); int ipp_linesMax = std::min(linesMax, nz*numangle/threshold); int linesCount = 0; lines.resize(ipp_linesMax); IppStatus ok = ippiHoughLineGetSize_8u_C1R(srcSize, delta, ipp_linesMax, &bufferSize); Ipp8u* buffer = ippsMalloc_8u_L(bufferSize); if (ok >= 0) {ok = CV_INSTRUMENT_FUN_IPP(ippiHoughLine_Region_8u32f_C1R, image, step, srcSize, (IppPointPolar*) &lines[0], dstRoi, ipp_linesMax, &linesCount, delta, threshold, buffer);}; ippsFree(buffer); if (ok >= 0) { lines.resize(linesCount); CV_IMPL_ADD(CV_IMPL_IPP); return; } lines.clear(); setIppErrorStatus(); } #endif AutoBuffer _accum((numangle+2) * (numrho+2)); std::vector _sort_buf; AutoBuffer _tabSin(numangle); AutoBuffer _tabCos(numangle); int *accum = _accum; float *tabSin = _tabSin, *tabCos = _tabCos; memset( accum, 0, sizeof(accum[0]) * (numangle+2) * (numrho+2) ); float ang = static_cast(min_theta); for(int n = 0; n < numangle; ang += theta, n++ ) { tabSin[n] = (float)(sin((double)ang) * irho); tabCos[n] = (float)(cos((double)ang) * irho); } // stage 1. fill accumulator for( i = 0; i < height; i++ ) for( j = 0; j < width; j++ ) { if( image[i * step + j] != 0 ) for(int n = 0; n < numangle; n++ ) { int r = cvRound( j * tabCos[n] + i * tabSin[n] ); r += (numrho - 1) / 2; accum[(n+1) * (numrho+2) + r+1]++; } } // stage 2. find local maximums for(int r = 0; r < numrho; r++ ) for(int n = 0; n < numangle; n++ ) { int base = (n+1) * (numrho+2) + r+1; if( accum[base] > threshold && accum[base] > accum[base - 1] && accum[base] >= accum[base + 1] && accum[base] > accum[base - numrho - 2] && accum[base] >= accum[base + numrho + 2] ) _sort_buf.push_back(base); } // stage 3. sort the detected lines by accumulator value std::sort(_sort_buf.begin(), _sort_buf.end(), hough_cmp_gt(accum)); // stage 4. store the first min(total,linesMax) lines to the output buffer linesMax = std::min(linesMax, (int)_sort_buf.size()); double scale = 1./(numrho+2); for( i = 0; i < linesMax; i++ ) { LinePolar line; int idx = _sort_buf[i]; int n = cvFloor(idx*scale) - 1; int r = idx - (n+1)*(numrho+2) - 1; line.rho = (r - (numrho - 1)*0.5f) * rho; line.angle = static_cast(min_theta) + n * theta; lines.push_back(Vec2f(line.rho, line.angle)); } } // Multi-Scale variant of Classical Hough Transform struct hough_index { hough_index() : value(0), rho(0.f), theta(0.f) {} hough_index(int _val, float _rho, float _theta) : value(_val), rho(_rho), theta(_theta) {} int value; float rho, theta; }; static void HoughLinesSDiv( const Mat& img, float rho, float theta, int threshold, int srn, int stn, std::vector& lines, int linesMax, double min_theta, double max_theta ) { #define _POINT(row, column)\ (image_src[(row)*step+(column)]) int index, i; int ri, ti, ti1, ti0; int row, col; float r, t; /* Current rho and theta */ float rv; /* Some temporary rho value */ int fn = 0; float xc, yc; const float d2r = (float)(CV_PI / 180); int sfn = srn * stn; int fi; int count; int cmax = 0; std::vector lst; CV_Assert( img.type() == CV_8UC1 ); CV_Assert( linesMax > 0 ); threshold = MIN( threshold, 255 ); const uchar* image_src = img.ptr(); int step = (int)img.step; int w = img.cols; int h = img.rows; float irho = 1 / rho; float itheta = 1 / theta; float srho = rho / srn; float stheta = theta / stn; float isrho = 1 / srho; float istheta = 1 / stheta; int rn = cvFloor( std::sqrt( (double)w * w + (double)h * h ) * irho ); int tn = cvFloor( 2 * CV_PI * itheta ); lst.push_back(hough_index(threshold, -1.f, 0.f)); // Precalculate sin table std::vector _sinTable( 5 * tn * stn ); float* sinTable = &_sinTable[0]; for( index = 0; index < 5 * tn * stn; index++ ) sinTable[index] = (float)cos( stheta * index * 0.2f ); std::vector _caccum(rn * tn, (uchar)0); uchar* caccum = &_caccum[0]; // Counting all feature pixels for( row = 0; row < h; row++ ) for( col = 0; col < w; col++ ) fn += _POINT( row, col ) != 0; std::vector _x(fn), _y(fn); int* x = &_x[0], *y = &_y[0]; // Full Hough Transform (it's accumulator update part) fi = 0; for( row = 0; row < h; row++ ) { for( col = 0; col < w; col++ ) { if( _POINT( row, col )) { int halftn; float r0; float scale_factor; int iprev = -1; float phi, phi1; float theta_it; // Value of theta for iterating // Remember the feature point x[fi] = col; y[fi] = row; fi++; yc = (float) row + 0.5f; xc = (float) col + 0.5f; /* Update the accumulator */ t = (float) fabs( cvFastArctan( yc, xc ) * d2r ); r = (float) std::sqrt( (double)xc * xc + (double)yc * yc ); r0 = r * irho; ti0 = cvFloor( (t + CV_PI*0.5) * itheta ); caccum[ti0]++; theta_it = rho / r; theta_it = theta_it < theta ? theta_it : theta; scale_factor = theta_it * itheta; halftn = cvFloor( CV_PI / theta_it ); for( ti1 = 1, phi = theta_it - (float)(CV_PI*0.5), phi1 = (theta_it + t) * itheta; ti1 < halftn; ti1++, phi += theta_it, phi1 += scale_factor ) { rv = r0 * std::cos( phi ); i = (int)rv * tn; i += cvFloor( phi1 ); assert( i >= 0 ); assert( i < rn * tn ); caccum[i] = (uchar) (caccum[i] + ((i ^ iprev) != 0)); iprev = i; if( cmax < caccum[i] ) cmax = caccum[i]; } } } } // Starting additional analysis count = 0; for( ri = 0; ri < rn; ri++ ) { for( ti = 0; ti < tn; ti++ ) { if( caccum[ri * tn + ti] > threshold ) count++; } } if( count * 100 > rn * tn ) { HoughLinesStandard( img, rho, theta, threshold, lines, linesMax, min_theta, max_theta ); return; } std::vector _buffer(srn * stn + 2); uchar* buffer = &_buffer[0]; uchar* mcaccum = buffer + 1; count = 0; for( ri = 0; ri < rn; ri++ ) { for( ti = 0; ti < tn; ti++ ) { if( caccum[ri * tn + ti] > threshold ) { count++; memset( mcaccum, 0, sfn * sizeof( uchar )); for( index = 0; index < fn; index++ ) { int ti2; float r0; yc = (float) y[index] + 0.5f; xc = (float) x[index] + 0.5f; // Update the accumulator t = (float) fabs( cvFastArctan( yc, xc ) * d2r ); r = (float) std::sqrt( (double)xc * xc + (double)yc * yc ) * isrho; ti0 = cvFloor( (t + CV_PI * 0.5) * istheta ); ti2 = (ti * stn - ti0) * 5; r0 = (float) ri *srn; for( ti1 = 0; ti1 < stn; ti1++, ti2 += 5 ) { rv = r * sinTable[(int) (std::abs( ti2 ))] - r0; i = cvFloor( rv ) * stn + ti1; i = CV_IMAX( i, -1 ); i = CV_IMIN( i, sfn ); mcaccum[i]++; assert( i >= -1 ); assert( i <= sfn ); } } // Find peaks in maccum... for( index = 0; index < sfn; index++ ) { i = 0; int pos = (int)(lst.size() - 1); if( pos < 0 || lst[pos].value < mcaccum[index] ) { hough_index vi(mcaccum[index], index / stn * srho + ri * rho, index % stn * stheta + ti * theta - (float)(CV_PI*0.5)); lst.push_back(vi); for( ; pos >= 0; pos-- ) { if( lst[pos].value > vi.value ) break; lst[pos+1] = lst[pos]; } lst[pos+1] = vi; if( (int)lst.size() > linesMax ) lst.pop_back(); } } } } } for( size_t idx = 0; idx < lst.size(); idx++ ) { if( lst[idx].rho < 0 ) continue; lines.push_back(Vec2f(lst[idx].rho, lst[idx].theta)); } } /****************************************************************************************\ * Probabilistic Hough Transform * \****************************************************************************************/ static void HoughLinesProbabilistic( Mat& image, float rho, float theta, int threshold, int lineLength, int lineGap, std::vector& lines, int linesMax ) { Point pt; float irho = 1 / rho; RNG rng((uint64)-1); CV_Assert( image.type() == CV_8UC1 ); int width = image.cols; int height = image.rows; int numangle = cvRound(CV_PI / theta); int numrho = cvRound(((width + height) * 2 + 1) / rho); #if defined HAVE_IPP && IPP_VERSION_X100 >= 810 && !IPP_DISABLE_HOUGH CV_IPP_CHECK() { IppiSize srcSize = { width, height }; IppPointPolar delta = { rho, theta }; IppiHoughProbSpec* pSpec; int bufferSize, specSize; int ipp_linesMax = std::min(linesMax, numangle*numrho); int linesCount = 0; lines.resize(ipp_linesMax); IppStatus ok = ippiHoughProbLineGetSize_8u_C1R(srcSize, delta, &specSize, &bufferSize); Ipp8u* buffer = ippsMalloc_8u_L(bufferSize); pSpec = (IppiHoughProbSpec*) ippsMalloc_8u_L(specSize); if (ok >= 0) ok = ippiHoughProbLineInit_8u32f_C1R(srcSize, delta, ippAlgHintNone, pSpec); if (ok >= 0) {ok = CV_INSTRUMENT_FUN_IPP(ippiHoughProbLine_8u32f_C1R, image.data, (int)image.step, srcSize, threshold, lineLength, lineGap, (IppiPoint*) &lines[0], ipp_linesMax, &linesCount, buffer, pSpec);}; ippsFree(pSpec); ippsFree(buffer); if (ok >= 0) { lines.resize(linesCount); CV_IMPL_ADD(CV_IMPL_IPP); return; } lines.clear(); setIppErrorStatus(); } #endif Mat accum = Mat::zeros( numangle, numrho, CV_32SC1 ); Mat mask( height, width, CV_8UC1 ); std::vector trigtab(numangle*2); for( int n = 0; n < numangle; n++ ) { trigtab[n*2] = (float)(cos((double)n*theta) * irho); trigtab[n*2+1] = (float)(sin((double)n*theta) * irho); } const float* ttab = &trigtab[0]; uchar* mdata0 = mask.ptr(); std::vector nzloc; // stage 1. collect non-zero image points for( pt.y = 0; pt.y < height; pt.y++ ) { const uchar* data = image.ptr(pt.y); uchar* mdata = mask.ptr(pt.y); for( pt.x = 0; pt.x < width; pt.x++ ) { if( data[pt.x] ) { mdata[pt.x] = (uchar)1; nzloc.push_back(pt); } else mdata[pt.x] = 0; } } int count = (int)nzloc.size(); // stage 2. process all the points in random order for( ; count > 0; count-- ) { // choose random point out of the remaining ones int idx = rng.uniform(0, count); int max_val = threshold-1, max_n = 0; Point point = nzloc[idx]; Point line_end[2]; float a, b; int* adata = accum.ptr(); int i = point.y, j = point.x, k, x0, y0, dx0, dy0, xflag; int good_line; const int shift = 16; // "remove" it by overriding it with the last element nzloc[idx] = nzloc[count-1]; // check if it has been excluded already (i.e. belongs to some other line) if( !mdata0[i*width + j] ) continue; // update accumulator, find the most probable line for( int n = 0; n < numangle; n++, adata += numrho ) { int r = cvRound( j * ttab[n*2] + i * ttab[n*2+1] ); r += (numrho - 1) / 2; int val = ++adata[r]; if( max_val < val ) { max_val = val; max_n = n; } } // if it is too "weak" candidate, continue with another point if( max_val < threshold ) continue; // from the current point walk in each direction // along the found line and extract the line segment a = -ttab[max_n*2+1]; b = ttab[max_n*2]; x0 = j; y0 = i; if( fabs(a) > fabs(b) ) { xflag = 1; dx0 = a > 0 ? 1 : -1; dy0 = cvRound( b*(1 << shift)/fabs(a) ); y0 = (y0 << shift) + (1 << (shift-1)); } else { xflag = 0; dy0 = b > 0 ? 1 : -1; dx0 = cvRound( a*(1 << shift)/fabs(b) ); x0 = (x0 << shift) + (1 << (shift-1)); } for( k = 0; k < 2; k++ ) { int gap = 0, x = x0, y = y0, dx = dx0, dy = dy0; if( k > 0 ) dx = -dx, dy = -dy; // walk along the line using fixed-point arithmetics, // stop at the image border or in case of too big gap for( ;; x += dx, y += dy ) { uchar* mdata; int i1, j1; if( xflag ) { j1 = x; i1 = y >> shift; } else { j1 = x >> shift; i1 = y; } if( j1 < 0 || j1 >= width || i1 < 0 || i1 >= height ) break; mdata = mdata0 + i1*width + j1; // for each non-zero point: // update line end, // clear the mask element // reset the gap if( *mdata ) { gap = 0; line_end[k].y = i1; line_end[k].x = j1; } else if( ++gap > lineGap ) break; } } good_line = std::abs(line_end[1].x - line_end[0].x) >= lineLength || std::abs(line_end[1].y - line_end[0].y) >= lineLength; for( k = 0; k < 2; k++ ) { int x = x0, y = y0, dx = dx0, dy = dy0; if( k > 0 ) dx = -dx, dy = -dy; // walk along the line using fixed-point arithmetics, // stop at the image border or in case of too big gap for( ;; x += dx, y += dy ) { uchar* mdata; int i1, j1; if( xflag ) { j1 = x; i1 = y >> shift; } else { j1 = x >> shift; i1 = y; } mdata = mdata0 + i1*width + j1; // for each non-zero point: // update line end, // clear the mask element // reset the gap if( *mdata ) { if( good_line ) { adata = accum.ptr(); for( int n = 0; n < numangle; n++, adata += numrho ) { int r = cvRound( j1 * ttab[n*2] + i1 * ttab[n*2+1] ); r += (numrho - 1) / 2; adata[r]--; } } *mdata = 0; } if( i1 == line_end[k].y && j1 == line_end[k].x ) break; } } if( good_line ) { Vec4i lr(line_end[0].x, line_end[0].y, line_end[1].x, line_end[1].y); lines.push_back(lr); if( (int)lines.size() >= linesMax ) return; } } } #ifdef HAVE_OPENCL #define OCL_MAX_LINES 4096 static bool ocl_makePointsList(InputArray _src, OutputArray _pointsList, InputOutputArray _counters) { UMat src = _src.getUMat(); _pointsList.create(1, (int) src.total(), CV_32SC1); UMat pointsList = _pointsList.getUMat(); UMat counters = _counters.getUMat(); ocl::Device dev = ocl::Device::getDefault(); const int pixPerWI = 16; int workgroup_size = min((int) dev.maxWorkGroupSize(), (src.cols + pixPerWI - 1)/pixPerWI); ocl::Kernel pointListKernel("make_point_list", ocl::imgproc::hough_lines_oclsrc, format("-D MAKE_POINTS_LIST -D GROUP_SIZE=%d -D LOCAL_SIZE=%d", workgroup_size, src.cols)); if (pointListKernel.empty()) return false; pointListKernel.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnlyNoSize(pointsList), ocl::KernelArg::PtrWriteOnly(counters)); size_t localThreads[2] = { (size_t)workgroup_size, 1 }; size_t globalThreads[2] = { (size_t)workgroup_size, (size_t)src.rows }; return pointListKernel.run(2, globalThreads, localThreads, false); } static bool ocl_fillAccum(InputArray _pointsList, OutputArray _accum, int total_points, double rho, double theta, int numrho, int numangle) { UMat pointsList = _pointsList.getUMat(); _accum.create(numangle + 2, numrho + 2, CV_32SC1); UMat accum = _accum.getUMat(); ocl::Device dev = ocl::Device::getDefault(); float irho = (float) (1 / rho); int workgroup_size = min((int) dev.maxWorkGroupSize(), total_points); ocl::Kernel fillAccumKernel; size_t localThreads[2]; size_t globalThreads[2]; size_t local_memory_needed = (numrho + 2)*sizeof(int); if (local_memory_needed > dev.localMemSize()) { accum.setTo(Scalar::all(0)); fillAccumKernel.create("fill_accum_global", ocl::imgproc::hough_lines_oclsrc, format("-D FILL_ACCUM_GLOBAL")); if (fillAccumKernel.empty()) return false; globalThreads[0] = workgroup_size; globalThreads[1] = numangle; fillAccumKernel.args(ocl::KernelArg::ReadOnlyNoSize(pointsList), ocl::KernelArg::WriteOnlyNoSize(accum), total_points, irho, (float) theta, numrho, numangle); return fillAccumKernel.run(2, globalThreads, NULL, false); } else { fillAccumKernel.create("fill_accum_local", ocl::imgproc::hough_lines_oclsrc, format("-D FILL_ACCUM_LOCAL -D LOCAL_SIZE=%d -D BUFFER_SIZE=%d", workgroup_size, numrho + 2)); if (fillAccumKernel.empty()) return false; localThreads[0] = workgroup_size; localThreads[1] = 1; globalThreads[0] = workgroup_size; globalThreads[1] = numangle+2; fillAccumKernel.args(ocl::KernelArg::ReadOnlyNoSize(pointsList), ocl::KernelArg::WriteOnlyNoSize(accum), total_points, irho, (float) theta, numrho, numangle); return fillAccumKernel.run(2, globalThreads, localThreads, false); } } static bool ocl_HoughLines(InputArray _src, OutputArray _lines, double rho, double theta, int threshold, double min_theta, double max_theta) { CV_Assert(_src.type() == CV_8UC1); if (max_theta < 0 || max_theta > CV_PI ) { CV_Error( Error::StsBadArg, "max_theta must fall between 0 and pi" ); } if (min_theta < 0 || min_theta > max_theta ) { CV_Error( Error::StsBadArg, "min_theta must fall between 0 and max_theta" ); } if (!(rho > 0 && theta > 0)) { CV_Error( Error::StsBadArg, "rho and theta must be greater 0" ); } UMat src = _src.getUMat(); int numangle = cvRound((max_theta - min_theta) / theta); int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho); UMat pointsList; UMat counters(1, 2, CV_32SC1, Scalar::all(0)); if (!ocl_makePointsList(src, pointsList, counters)) return false; int total_points = counters.getMat(ACCESS_READ).at(0, 0); if (total_points <= 0) { _lines.assign(UMat(0,0,CV_32FC2)); return true; } UMat accum; if (!ocl_fillAccum(pointsList, accum, total_points, rho, theta, numrho, numangle)) return false; const int pixPerWI = 8; ocl::Kernel getLinesKernel("get_lines", ocl::imgproc::hough_lines_oclsrc, format("-D GET_LINES")); if (getLinesKernel.empty()) return false; int linesMax = threshold > 0 ? min(total_points*numangle/threshold, OCL_MAX_LINES) : OCL_MAX_LINES; UMat lines(linesMax, 1, CV_32FC2); getLinesKernel.args(ocl::KernelArg::ReadOnly(accum), ocl::KernelArg::WriteOnlyNoSize(lines), ocl::KernelArg::PtrWriteOnly(counters), linesMax, threshold, (float) rho, (float) theta); size_t globalThreads[2] = { ((size_t)numrho + pixPerWI - 1)/pixPerWI, (size_t)numangle }; if (!getLinesKernel.run(2, globalThreads, NULL, false)) return false; int total_lines = min(counters.getMat(ACCESS_READ).at(0, 1), linesMax); if (total_lines > 0) _lines.assign(lines.rowRange(Range(0, total_lines))); else _lines.assign(UMat(0,0,CV_32FC2)); return true; } static bool ocl_HoughLinesP(InputArray _src, OutputArray _lines, double rho, double theta, int threshold, double minLineLength, double maxGap) { CV_Assert(_src.type() == CV_8UC1); if (!(rho > 0 && theta > 0)) { CV_Error( Error::StsBadArg, "rho and theta must be greater 0" ); } UMat src = _src.getUMat(); int numangle = cvRound(CV_PI / theta); int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho); UMat pointsList; UMat counters(1, 2, CV_32SC1, Scalar::all(0)); if (!ocl_makePointsList(src, pointsList, counters)) return false; int total_points = counters.getMat(ACCESS_READ).at(0, 0); if (total_points <= 0) { _lines.assign(UMat(0,0,CV_32SC4)); return true; } UMat accum; if (!ocl_fillAccum(pointsList, accum, total_points, rho, theta, numrho, numangle)) return false; ocl::Kernel getLinesKernel("get_lines", ocl::imgproc::hough_lines_oclsrc, format("-D GET_LINES_PROBABOLISTIC")); if (getLinesKernel.empty()) return false; int linesMax = threshold > 0 ? min(total_points*numangle/threshold, OCL_MAX_LINES) : OCL_MAX_LINES; UMat lines(linesMax, 1, CV_32SC4); getLinesKernel.args(ocl::KernelArg::ReadOnly(accum), ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnlyNoSize(lines), ocl::KernelArg::PtrWriteOnly(counters), linesMax, threshold, (int) minLineLength, (int) maxGap, (float) rho, (float) theta); size_t globalThreads[2] = { (size_t)numrho, (size_t)numangle }; if (!getLinesKernel.run(2, globalThreads, NULL, false)) return false; int total_lines = min(counters.getMat(ACCESS_READ).at(0, 1), linesMax); if (total_lines > 0) _lines.assign(lines.rowRange(Range(0, total_lines))); else _lines.assign(UMat(0,0,CV_32SC4)); return true; } #endif /* HAVE_OPENCL */ void HoughLines( InputArray _image, OutputArray _lines, double rho, double theta, int threshold, double srn, double stn, double min_theta, double max_theta ) { CV_INSTRUMENT_REGION() CV_OCL_RUN(srn == 0 && stn == 0 && _image.isUMat() && _lines.isUMat(), ocl_HoughLines(_image, _lines, rho, theta, threshold, min_theta, max_theta)); Mat image = _image.getMat(); std::vector lines; if( srn == 0 && stn == 0 ) HoughLinesStandard(image, (float)rho, (float)theta, threshold, lines, INT_MAX, min_theta, max_theta ); else HoughLinesSDiv(image, (float)rho, (float)theta, threshold, cvRound(srn), cvRound(stn), lines, INT_MAX, min_theta, max_theta); Mat(lines).copyTo(_lines); } void HoughLinesP(InputArray _image, OutputArray _lines, double rho, double theta, int threshold, double minLineLength, double maxGap ) { CV_INSTRUMENT_REGION() CV_OCL_RUN(_image.isUMat() && _lines.isUMat(), ocl_HoughLinesP(_image, _lines, rho, theta, threshold, minLineLength, maxGap)); Mat image = _image.getMat(); std::vector lines; HoughLinesProbabilistic(image, (float)rho, (float)theta, threshold, cvRound(minLineLength), cvRound(maxGap), lines, INT_MAX); Mat(lines).copyTo(_lines); } /****************************************************************************************\ * Circle Detection * \****************************************************************************************/ struct markedCircle { markedCircle(Vec3f _c, int _idx, int _idxC) : c(_c), idx(_idx), idxC(_idxC) {} Vec3f c; int idx, idxC; }; inline bool cmpCircleIndex(const markedCircle &left, const markedCircle &right) { return left.idx > right.idx; } class HoughCirclesAccumInvoker : public ParallelLoopBody { public: HoughCirclesAccumInvoker(const Mat &_edges, const Mat &_dx, const Mat &_dy, int _minRadius, int _maxRadius, float _idp, std::vector& _accumVec, std::vector& _nz, Mutex& _mtx) : edges(_edges), dx(_dx), dy(_dy), minRadius(_minRadius), maxRadius(_maxRadius), idp(_idp), accumVec(_accumVec), nz(_nz), mutex(_mtx) { acols = cvCeil(edges.cols * idp), arows = cvCeil(edges.rows * idp); astep = acols + 2; #if CV_SIMD128 haveSIMD = hasSIMD128(); #endif } ~HoughCirclesAccumInvoker() { } void operator()(const Range &boundaries) const { Mat accumLocal = Mat(arows + 2, acols + 2, CV_32SC1, Scalar::all(0)); int *adataLocal = accumLocal.ptr(); std::vector nzLocal; nzLocal.reserve(256); int startRow = boundaries.start; int endRow = boundaries.end; int numCols = edges.cols; if(edges.isContinuous() && dx.isContinuous() && dy.isContinuous()) { numCols *= (boundaries.end - boundaries.start); endRow = boundaries.start + 1; } // Accumulate circle evidence for each edge pixel for(int y = startRow; y < endRow; ++y ) { const uchar* edgeData = edges.ptr(y); const short* dxData = dx.ptr(y); const short* dyData = dy.ptr(y); int x = 0; for(; x < numCols; ++x ) { #if CV_SIMD128 if(haveSIMD) { v_uint8x16 v_zero = v_setzero_u8(); for(; x <= numCols - 32; x += 32) { v_uint8x16 v_edge1 = v_load(edgeData + x); v_uint8x16 v_edge2 = v_load(edgeData + x + 16); v_uint8x16 v_cmp1 = (v_edge1 == v_zero); v_uint8x16 v_cmp2 = (v_edge2 == v_zero); unsigned int mask1 = v_signmask(v_cmp1); unsigned int mask2 = v_signmask(v_cmp2); mask1 ^= 0x0000ffff; mask2 ^= 0x0000ffff; if(mask1) { x += trailingZeros32(mask1); goto _next_step; } if(mask2) { x += trailingZeros32(mask2 << 16); goto _next_step; } } } #endif for(; x < numCols && !edgeData[x]; ++x) ; if(x == numCols) continue; #if CV_SIMD128 _next_step: #endif float vx, vy; int sx, sy, x0, y0, x1, y1; vx = dxData[x]; vy = dyData[x]; if(vx == 0 && vy == 0) continue; float mag = std::sqrt(vx*vx+vy*vy); if(mag < 1.0f) continue; Point pt = Point(x % edges.cols, y + x / edges.cols); nzLocal.push_back(pt); sx = cvRound((vx * idp) * 1024 / mag); sy = cvRound((vy * idp) * 1024 / mag); x0 = cvRound((pt.x * idp) * 1024); y0 = cvRound((pt.y * idp) * 1024); // Step from min_radius to max_radius in both directions of the gradient for(int k1 = 0; k1 < 2; k1++ ) { x1 = x0 + minRadius * sx; y1 = y0 + minRadius * sy; for(int r = minRadius; r <= maxRadius; x1 += sx, y1 += sy, r++ ) { int x2 = x1 >> 10, y2 = y1 >> 10; if( (unsigned)x2 >= (unsigned)acols || (unsigned)y2 >= (unsigned)arows ) break; adataLocal[y2*astep + x2]++; } sx = -sx; sy = -sy; } } } AutoLock lock(mutex); accumVec.push_back(accumLocal); nz.insert(nz.end(), nzLocal.begin(), nzLocal.end()); } private: const Mat &edges, &dx, &dy; int minRadius, maxRadius; float idp; std::vector& accumVec; std::vector& nz; int acols, arows, astep; #if CV_SIMD128 bool haveSIMD; #endif Mutex& mutex; }; class HoughCirclesFindCentersInvoker : public ParallelLoopBody { public: HoughCirclesFindCentersInvoker(const Mat &_accum, std::vector &_centers, int _accThreshold, Mutex& _mutex) : accum(_accum), centers(_centers), accThreshold(_accThreshold), _lock(_mutex) { acols = accum.cols; arows = accum.rows; adata = accum.ptr(); } ~HoughCirclesFindCentersInvoker() {} void operator()(const Range &boundaries) const { int startRow = boundaries.start; int endRow = boundaries.end; std::vector centersLocal; bool singleThread = (boundaries == Range(1, accum.rows - 1)); startRow = max(1, startRow); endRow = min(arows - 1, endRow); //Find possible circle centers for(int y = startRow; y < endRow; ++y ) { int x = 1; int base = y * acols + x; for(; x < acols - 1; ++x, ++base ) { if( adata[base] > accThreshold && adata[base] > adata[base-1] && adata[base] >= adata[base+1] && adata[base] > adata[base-acols] && adata[base] >= adata[base+acols] ) centersLocal.push_back(base); } } if(!centersLocal.empty()) { if(singleThread) centers = centersLocal; else { AutoLock alock(_lock); centers.insert(centers.end(), centersLocal.begin(), centersLocal.end()); } } } private: const Mat &accum; std::vector ¢ers; int accThreshold; int acols, arows; const int *adata; Mutex& _lock; }; class HoughCircleEstimateRadiusInvoker : public ParallelLoopBody { public: HoughCircleEstimateRadiusInvoker(const std::vector &_nz, const std::vector &_centers, std::vector &_circles, int _acols, int _circlesMax, int _accThreshold, int _minRadius, int _maxRadius, float _minDist, float _dp, Mutex& _mutex) : nz(_nz), centers(_centers), circles(_circles), acols(_acols), circlesMax(_circlesMax), accThreshold(_accThreshold), minRadius(_minRadius), maxRadius(_maxRadius), minDist(_minDist), dr(_dp), _lock(_mutex) { minRadius2 = (float)minRadius * minRadius; maxRadius2 = (float)maxRadius * maxRadius; minDist = std::max(dr, minDist); minDist *= minDist; nzSz = (int)nz.size(); centerSz = (int)centers.size(); iMax = -1; isMaxCircles = false; isLastCenter = false; mc.reserve(64); loopIdx = std::vector(centerSz + 1, false); #if CV_SIMD128 haveSIMD = hasSIMD128(); if(haveSIMD) { v_minRadius2 = v_setall_f32(minRadius2); v_maxRadius2 = v_setall_f32(maxRadius2); } #endif } ~HoughCircleEstimateRadiusInvoker() {_lock.unlock();} void operator()(const Range &boundaries) const { if (isMaxCircles) return; const int nBinsPerDr = 10; int nBins = cvRound((maxRadius - minRadius)/dr*nBinsPerDr); std::vector bins(nBins, 0); Mat distBuf(1, nzSz, CV_32FC1), distSqrBuf(1, nzSz, CV_32FC1); float *ddata = distBuf.ptr(); float *dSqrData = distSqrBuf.ptr(); bool singleThread = (boundaries == Range(0, centerSz)); int i = boundaries.start; if(boundaries.end == centerSz) isLastCenter = true; // For each found possible center // Estimate radius and check support for(; i < boundaries.end; ++i) { if (isMaxCircles) return; int ofs = centers[i]; int y = ofs / acols; int x = ofs - y * acols; //Calculate circle's center in pixels Point2f curCenter = Point2f((x + 0.5f) * dr, (y + 0.5f) * dr); float rBest = 0; int j = 0, nzCount = 0, maxCount = 0; // Check distance with previously detected valid circles int curCircleSz = (int)circles.size(); bool valid = checkDistance(curCenter, 0, curCircleSz); if (isMaxCircles) return; if(valid) { #if CV_SIMD128 if(haveSIMD) { v_float32x4 v_curCenterX = v_setall_f32(curCenter.x); v_float32x4 v_curCenterY = v_setall_f32(curCenter.y); float CV_DECL_ALIGNED(16) rbuf[4]; int CV_DECL_ALIGNED(16) mbuf[4]; for(; j <= nzSz - 4; j += 4) { v_float32x4 v_nzX, v_nzY; v_load_deinterleave((const float*)&nz[j], v_nzX, v_nzY); v_float32x4 v_x = v_cvt_f32(v_reinterpret_as_s32(v_nzX)); v_float32x4 v_y = v_cvt_f32(v_reinterpret_as_s32(v_nzY)); v_float32x4 v_dx = v_x - v_curCenterX; v_float32x4 v_dy = v_y - v_curCenterY; v_float32x4 v_r2 = (v_dx * v_dx) + (v_dy * v_dy); v_float32x4 vmask = (v_minRadius2 <= v_r2) & (v_r2 <= v_maxRadius2); v_store_aligned(rbuf, v_r2); v_store_aligned(mbuf, v_reinterpret_as_s32(vmask)); for(int p = 0; p < 4; p++) { if(mbuf[p] < 0) { ddata[nzCount] = rbuf[p]; nzCount++; } } } } #endif // Estimate best radius for(; j < nzSz; ++j) { Point pt = nz[j]; float _dx = curCenter.x - pt.x, _dy = curCenter.y - pt.y; float _r2 = _dx * _dx + _dy * _dy; if(minRadius2 <= _r2 && _r2 <= maxRadius2) { ddata[nzCount] = _r2; ++nzCount; } } if (isMaxCircles) return; if(nzCount) { Mat bufRange = distSqrBuf.colRange(Range(0, nzCount)); sqrt(distBuf.colRange(Range(0, nzCount)), bufRange); std::fill(bins.begin(), bins.end(), 0); for(int k = 0; k < nzCount; k++) { int bin = std::max(0, std::min(nBins-1, cvRound((dSqrData[k] - minRadius)/dr*nBinsPerDr))); bins[bin]++; } if (isMaxCircles) return; for(j = nBins - 1; j > 0; j--) { if(bins[j]) { int upbin = j; int curCount = 0; for(; j > upbin - nBinsPerDr && j >= 0; j--) { curCount += bins[j]; } float rCur = (upbin + j)/2.f /nBinsPerDr * dr + minRadius; if((curCount * rBest >= maxCount * rCur) || (rBest < FLT_EPSILON && curCount >= maxCount)) { rBest = rCur; maxCount = curCount; } } } } } if(singleThread) { // Check if the circle has enough support if(maxCount > accThreshold) { circles.push_back(Vec3f(curCenter.x, curCenter.y, rBest)); if( circles.size() >= (unsigned int)circlesMax ) return; } } else { _lock.lock(); if(isMaxCircles) { _lock.unlock(); return; } loopIdx[i] = true; if( maxCount > accThreshold ) { while(loopIdx[iMax + 1]) ++iMax; // Temporary store circle, index and already checked index for block wise testing mc.push_back(markedCircle(Vec3f(curCenter.x, curCenter.y, rBest), i, curCircleSz)); if(i <= iMax) { std::sort(mc.begin(), mc.end(), cmpCircleIndex); for(int k = (int)mc.size() - 1; k >= 0; --k) { if(mc[k].idx <= iMax) { if(checkDistance(Point2f(mc[k].c[0], mc[k].c[1]), mc[k].idxC, (int)circles.size())) { circles.push_back(mc[k].c); if(circles.size() >= (unsigned int)circlesMax) { isMaxCircles = true; _lock.unlock(); return; } } mc.pop_back(); } else break; } } } if(isLastCenter && !mc.empty()) { while(loopIdx[iMax + 1]) ++iMax; if(iMax == centerSz - 1) { std::sort(mc.begin(), mc.end(), cmpCircleIndex); for(int k = (int)mc.size() - 1; k >= 0; --k) { if(checkDistance(Point2f(mc[k].c[0], mc[k].c[1]), mc[k].idxC, (int)circles.size())) { circles.push_back(mc[k].c); if(circles.size() >= (unsigned int)circlesMax) { isMaxCircles = true; _lock.unlock(); return; } } } } } _lock.unlock(); } } } private: bool checkDistance(Point2f curCenter, int startIdx, int endIdx) const { // Check distance with previously detected circles for(int j = startIdx; j < endIdx; ++j ) { float dx = circles[j][0] - curCenter.x; float dy = circles[j][1] - curCenter.y; if( dx * dx + dy * dy < minDist ) return false; } return true; } const std::vector &nz; const std::vector ¢ers; std::vector &circles; int acols, circlesMax, accThreshold, minRadius, maxRadius; float minDist, dr; #if CV_SIMD128 bool haveSIMD; v_float32x4 v_minRadius2, v_maxRadius2; #endif int nzSz, centerSz; float minRadius2, maxRadius2; mutable std::vector loopIdx; mutable std::vector mc; mutable volatile int iMax; mutable volatile bool isMaxCircles, isLastCenter; Mutex& _lock; }; static void HoughCirclesGradient(InputArray _image, OutputArray _circles, float dp, float minDist, int minRadius, int maxRadius, int cannyThreshold, int accThreshold, int maxCircles, int kernelSize ) { CV_Assert(kernelSize == -1 || kernelSize == 3 || kernelSize == 5 || kernelSize == 7); dp = max(dp, 1.f); float idp = 1.f/dp; Mat edges, dx, dy; Sobel(_image, dx, CV_16S, 1, 0, kernelSize, 1, 0, BORDER_REPLICATE); Sobel(_image, dy, CV_16S, 0, 1, kernelSize, 1, 0, BORDER_REPLICATE); Canny(dx, dy, edges, std::max(1, cannyThreshold / 2), cannyThreshold, false); Mutex mtx; int numThreads = std::max(1, getNumThreads()); std::vector accumVec; std::vector nz; parallel_for_(Range(0, edges.rows), HoughCirclesAccumInvoker(edges, dx, dy, minRadius, maxRadius, idp, accumVec, nz, mtx), numThreads); if(nz.empty()) return; Mat accum = accumVec[0].clone(); for(size_t i = 1; i < accumVec.size(); i++) { accum += accumVec[i]; } std::vector centers; // 4 rows when multithreaded because there is a bit overhead // and on the other side there are some row ranges where centers are concentrated parallel_for_(Range(1, accum.rows - 1), HoughCirclesFindCentersInvoker(accum, centers, accThreshold, mtx), (numThreads > 1) ? ((accum.rows - 2) / 4) : 1); int centerCnt = (int)centers.size(); if(centerCnt == 0) return; std::sort(centers.begin(), centers.end(), hough_cmp_gt(accum.ptr())); std::vector circles; circles.reserve(256); if(maxCircles == 0) { minDist *= minDist; for(int i = 0; i < centerCnt; ++i) { int _centers = centers[i]; int y = _centers / accum.cols; int x = _centers - y * accum.cols; bool goodPoint = true; for(uint j = 0; j < circles.size(); ++j) { Vec3f pt = circles[j]; float distX = x - pt[0], distY = y - pt[1]; if (distX * distX + distY * distY < minDist) { goodPoint = false; break; } } if(goodPoint) circles.push_back(Vec3f((x + 0.5f) * dp, (y + 0.5f) * dp, 0)); } if(circles.size() > 0) { _circles.create(1, (int)circles.size(), CV_32FC3); Mat(1, (int)circles.size(), CV_32FC3, &circles[0]).copyTo(_circles.getMat()); return; } } // One loop iteration per thread if multithreaded. parallel_for_(Range(0, centerCnt), HoughCircleEstimateRadiusInvoker(nz, centers, circles, accum.cols, maxCircles, accThreshold, minRadius, maxRadius, minDist, dp, mtx), (numThreads > 1) ? centerCnt : 1); if(circles.size() > 0) { _circles.create(1, (int)circles.size(), CV_32FC3); Mat(1, (int)circles.size(), CV_32FC3, &circles[0]).copyTo(_circles.getMat()); } } static void HoughCircles( InputArray _image, OutputArray _circles, int method, double dp, double minDist, double param1, double param2, int minRadius, int maxRadius, int maxCircles, double param3 ) { CV_INSTRUMENT_REGION() CV_Assert(!_image.empty() && _image.type() == CV_8UC1 && (_image.isMat() || _image.isUMat())); CV_Assert(_circles.isMat() || _circles.isVector()); if( dp <= 0 || minDist <= 0 || param1 <= 0 || param2 <= 0) CV_Error( Error::StsOutOfRange, "dp, min_dist, canny_threshold and acc_threshold must be all positive numbers" ); int cannyThresh = cvRound(param1), accThresh = cvRound(param2), kernelSize = cvRound(param3); minRadius = std::max(0, minRadius); if(maxCircles < 0) maxCircles = INT_MAX; if( maxRadius <= 0 ) maxRadius = std::max( _image.rows(), _image.cols() ); else if( maxRadius <= minRadius ) maxRadius = minRadius + 2; switch( method ) { case CV_HOUGH_GRADIENT: HoughCirclesGradient(_image, _circles, (float)dp, (float)minDist, minRadius, maxRadius, cannyThresh, accThresh, maxCircles, kernelSize); break; default: CV_Error( Error::StsBadArg, "Unrecognized method id. Actually only CV_HOUGH_GRADIENT is supported." ); } } void HoughCircles( InputArray _image, OutputArray _circles, int method, double dp, double minDist, double param1, double param2, int minRadius, int maxRadius ) { HoughCircles(_image, _circles, method, dp, minDist, param1, param2, minRadius, maxRadius, -1, 3); } } // \namespace cv /* Wrapper function for standard hough transform */ CV_IMPL CvSeq* cvHoughLines2( CvArr* src_image, void* lineStorage, int method, double rho, double theta, int threshold, double param1, double param2, double min_theta, double max_theta ) { cv::Mat image = cv::cvarrToMat(src_image); std::vector l2; std::vector l4; CvMat* mat = 0; CvSeq* lines = 0; CvSeq lines_header; CvSeqBlock lines_block; int lineType, elemSize; int linesMax = INT_MAX; int iparam1, iparam2; if( !lineStorage ) CV_Error(cv::Error::StsNullPtr, "NULL destination" ); if( rho <= 0 || theta <= 0 || threshold <= 0 ) CV_Error( cv::Error::StsOutOfRange, "rho, theta and threshold must be positive" ); if( method != CV_HOUGH_PROBABILISTIC ) { lineType = CV_32FC2; elemSize = sizeof(float)*2; } else { lineType = CV_32SC4; elemSize = sizeof(int)*4; } bool isStorage = isStorageOrMat(lineStorage); if( isStorage ) { lines = cvCreateSeq( lineType, sizeof(CvSeq), elemSize, (CvMemStorage*)lineStorage ); } else { mat = (CvMat*)lineStorage; if( !CV_IS_MAT_CONT( mat->type ) || (mat->rows != 1 && mat->cols != 1) ) CV_Error( CV_StsBadArg, "The destination matrix should be continuous and have a single row or a single column" ); if( CV_MAT_TYPE( mat->type ) != lineType ) CV_Error( CV_StsBadArg, "The destination matrix data type is inappropriate, see the manual" ); lines = cvMakeSeqHeaderForArray( lineType, sizeof(CvSeq), elemSize, mat->data.ptr, mat->rows + mat->cols - 1, &lines_header, &lines_block ); linesMax = lines->total; cvClearSeq( lines ); } iparam1 = cvRound(param1); iparam2 = cvRound(param2); switch( method ) { case CV_HOUGH_STANDARD: HoughLinesStandard( image, (float)rho, (float)theta, threshold, l2, linesMax, min_theta, max_theta ); break; case CV_HOUGH_MULTI_SCALE: HoughLinesSDiv( image, (float)rho, (float)theta, threshold, iparam1, iparam2, l2, linesMax, min_theta, max_theta ); break; case CV_HOUGH_PROBABILISTIC: HoughLinesProbabilistic( image, (float)rho, (float)theta, threshold, iparam1, iparam2, l4, linesMax ); break; default: CV_Error( CV_StsBadArg, "Unrecognized method id" ); } int nlines = (int)(l2.size() + l4.size()); if( !isStorage ) { if( mat->cols > mat->rows ) mat->cols = nlines; else mat->rows = nlines; } if( nlines ) { cv::Mat lx = method == CV_HOUGH_STANDARD || method == CV_HOUGH_MULTI_SCALE ? cv::Mat(nlines, 1, CV_32FC2, &l2[0]) : cv::Mat(nlines, 1, CV_32SC4, &l4[0]); if (isStorage) { cvSeqPushMulti(lines, lx.ptr(), nlines); } else { cv::Mat dst(nlines, 1, lx.type(), mat->data.ptr); lx.copyTo(dst); } } if( isStorage ) return lines; return 0; } CV_IMPL CvSeq* cvHoughCircles( CvArr* src_image, void* circle_storage, int method, double dp, double min_dist, double param1, double param2, int min_radius, int max_radius ) { CvSeq* circles = NULL; int circles_max = INT_MAX; cv::Mat src = cv::cvarrToMat(src_image), circles_mat; if( !circle_storage ) CV_Error( CV_StsNullPtr, "NULL destination" ); bool isStorage = isStorageOrMat(circle_storage); if(isStorage) { circles = cvCreateSeq( CV_32FC3, sizeof(CvSeq), sizeof(float)*3, (CvMemStorage*)circle_storage ); } else { CvSeq circles_header; CvSeqBlock circles_block; CvMat *mat = (CvMat*)circle_storage; if( !CV_IS_MAT_CONT( mat->type ) || (mat->rows != 1 && mat->cols != 1) || CV_MAT_TYPE(mat->type) != CV_32FC3 ) CV_Error( CV_StsBadArg, "The destination matrix should be continuous and have a single row or a single column" ); circles = cvMakeSeqHeaderForArray( CV_32FC3, sizeof(CvSeq), sizeof(float)*3, mat->data.ptr, mat->rows + mat->cols - 1, &circles_header, &circles_block ); circles_max = circles->total; cvClearSeq( circles ); } cv::HoughCircles(src, circles_mat, method, dp, min_dist, param1, param2, min_radius, max_radius, circles_max, 3); cvSeqPushMulti(circles, circles_mat.data, (int)circles_mat.total()); return circles; } /* End of file. */