/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #include #include #include //#define _SUBPIX_VERBOSE #undef max namespace cv { void drawCircles(Mat& img, const vector& corners, const vector& radius) { for(size_t i = 0; i < corners.size(); i++) { circle(img, corners[i], cvRound(radius[i]), CV_RGB(255, 0, 0)); } } int histQuantile(const MatND& hist, float quantile) { if(hist.dims > 1) return -1; // works for 1D histograms only float cur_sum = 0; float total_sum = (float)sum(hist).val[0]; float quantile_sum = total_sum*quantile; for(int j = 0; j < hist.size[0]; j++) { cur_sum += (float)hist.at(j); if(cur_sum > quantile_sum) { return j; } } return hist.size[0] - 1; } bool is_smaller(const std::pair& p1, const std::pair& p2) { return p1.second < p2.second; } void orderContours(const vector >& contours, Point2f point, vector >& order) { order.clear(); int i, j, n = (int)contours.size(); for(i = 0; i < n; i++) { double min_dist = std::numeric_limits::max(); for(j = 0; j < n; j++) { double dist = norm(Point2f((float)contours[i][j].x, (float)contours[i][j].y) - point); min_dist = MIN(min_dist, dist); } order.push_back(std::pair(i, (float)min_dist)); } std::sort(order.begin(), order.end(), is_smaller); } // fit second order curve to a set of 2D points void fitCurve2Order(const vector& /*points*/, vector& /*curve*/) { // TBD } void findCurvesCross(const vector& /*curve1*/, const vector& /*curve2*/, Point2f& /*cross_point*/) { } void findLinesCrossPoint(Point2f origin1, Point2f dir1, Point2f origin2, Point2f dir2, Point2f& cross_point) { float det = dir2.x*dir1.y - dir2.y*dir1.x; Point2f offset = origin2 - origin1; float alpha = (dir2.x*offset.y - dir2.y*offset.x)/det; cross_point = origin1 + dir1*alpha; } void findCorner(const vector& contour, Point2f point, Point2f& corner) { // find the nearest point double min_dist = std::numeric_limits::max(); int min_idx = -1; Rect brect = boundingRect(Mat(contour)); // find corner idx for(size_t i = 0; i < contour.size(); i++) { double dist = norm(Point2f((float)contour[i].x, (float)contour[i].y) - point); if(dist < min_dist) { min_dist = dist; min_idx = (int)i; } } assert(min_idx >= 0); // temporary solution, have to make something more precise corner = contour[min_idx]; return; } void findCorner(const vector& contour, Point2f point, Point2f& corner) { // find the nearest point double min_dist = std::numeric_limits::max(); int min_idx = -1; Rect brect = boundingRect(Mat(contour)); // find corner idx for(size_t i = 0; i < contour.size(); i++) { double dist = norm(contour[i] - point); if(dist < min_dist) { min_dist = dist; min_idx = (int)i; } } assert(min_idx >= 0); // temporary solution, have to make something more precise corner = contour[min_idx]; return; } int segment_hist_max(const MatND& hist, int& low_thresh, int& high_thresh) { Mat bw; //const double max_bell_width = 20; // we expect two bells with width bounded above //const double min_bell_width = 5; // and below double total_sum = sum(hist).val[0]; //double thresh = total_sum/(2*max_bell_width)*0.25f; // quarter of a bar inside a bell // threshold(hist, bw, thresh, 255.0, CV_THRESH_BINARY); double quantile_sum = 0.0; //double min_quantile = 0.2; double low_sum = 0; double max_segment_length = 0; int max_start_x = -1; int max_end_x = -1; int start_x = 0; const double out_of_bells_fraction = 0.1; for(int x = 0; x < hist.size[0]; x++) { quantile_sum += hist.at(x); if(quantile_sum < 0.2*total_sum) continue; if(quantile_sum - low_sum > out_of_bells_fraction*total_sum) { if(max_segment_length < x - start_x) { max_segment_length = x - start_x; max_start_x = start_x; max_end_x = x; } low_sum = quantile_sum; start_x = x; } } if(start_x == -1) { return 0; } else { low_thresh = cvRound(max_start_x + 0.25*(max_end_x - max_start_x)); high_thresh = cvRound(max_start_x + 0.75*(max_end_x - max_start_x)); return 1; } } bool find4QuadCornerSubpix(const Mat& img, std::vector& corners, Size region_size) { const int nbins = 256; float ranges[] = {0, 256}; const float* _ranges = ranges; MatND hist; #if defined(_SUBPIX_VERBOSE) vector radius; radius.assign(corners.size(), 0.0f); #endif //_SUBPIX_VERBOSE Mat black_comp, white_comp; for(size_t i = 0; i < corners.size(); i++) { int channels = 0; Rect roi(cvRound(corners[i].x - region_size.width), cvRound(corners[i].y - region_size.height), region_size.width*2 + 1, region_size.height*2 + 1); Mat img_roi = img(roi); calcHist(&img_roi, 1, &channels, Mat(), hist, 1, &nbins, &_ranges); #if 0 int black_thresh = histQuantile(hist, 0.45f); int white_thresh = histQuantile(hist, 0.55f); #else int black_thresh, white_thresh; segment_hist_max(hist, black_thresh, white_thresh); #endif threshold(img, black_comp, black_thresh, 255.0, CV_THRESH_BINARY_INV); threshold(img, white_comp, white_thresh, 255.0, CV_THRESH_BINARY); const int erode_count = 1; erode(black_comp, black_comp, Mat(), Point(-1, -1), erode_count); erode(white_comp, white_comp, Mat(), Point(-1, -1), erode_count); #if defined(_SUBPIX_VERBOSE) namedWindow("roi", 1); imshow("roi", img_roi); imwrite("test.jpg", img); namedWindow("black", 1); imshow("black", black_comp); namedWindow("white", 1); imshow("white", white_comp); cvWaitKey(0); imwrite("black.jpg", black_comp); imwrite("white.jpg", white_comp); #endif vector > white_contours, black_contours; vector white_hierarchy, black_hierarchy; findContours(black_comp, black_contours, black_hierarchy, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE); findContours(white_comp, white_contours, white_hierarchy, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE); if(black_contours.size() < 5 || white_contours.size() < 5) continue; // find two white and black blobs that are close to the input point vector > white_order, black_order; orderContours(black_contours, corners[i], black_order); orderContours(white_contours, corners[i], white_order); const float max_dist = 10.0f; if(black_order[0].second > max_dist || black_order[1].second > max_dist || white_order[0].second > max_dist || white_order[1].second > max_dist) { continue; // there will be no improvement in this corner position } const vector* quads[4] = {&black_contours[black_order[0].first], &black_contours[black_order[1].first], &white_contours[white_order[0].first], &white_contours[white_order[1].first]}; vector quads_approx[4]; Point2f quad_corners[4]; for(int k = 0; k < 4; k++) { #if 1 vector temp; for(size_t j = 0; j < quads[k]->size(); j++) temp.push_back((*quads[k])[j]); approxPolyDP(Mat(temp), quads_approx[k], 0.5, true); findCorner(quads_approx[k], corners[i], quad_corners[k]); #else findCorner(*quads[k], corners[i], quad_corners[k]); #endif quad_corners[k] += Point2f(0.5f, 0.5f); } // cross two lines Point2f origin1 = quad_corners[0]; Point2f dir1 = quad_corners[1] - quad_corners[0]; Point2f origin2 = quad_corners[2]; Point2f dir2 = quad_corners[3] - quad_corners[2]; double angle = acos(dir1.dot(dir2)/(norm(dir1)*norm(dir2))); if(cvIsNaN(angle) || cvIsInf(angle) || angle < 0.5 || angle > CV_PI - 0.5) continue; findLinesCrossPoint(origin1, dir1, origin2, dir2, corners[i]); #if defined(_SUBPIX_VERBOSE) radius[i] = norm(corners[i] - ground_truth_corners[ground_truth_idx])*6; #if 1 Mat test(img.size(), CV_32FC3); cvtColor(img, test, CV_GRAY2RGB); // line(test, quad_corners[0] - corners[i] + Point2f(30, 30), quad_corners[1] - corners[i] + Point2f(30, 30), cvScalar(0, 255, 0)); // line(test, quad_corners[2] - corners[i] + Point2f(30, 30), quad_corners[3] - corners[i] + Point2f(30, 30), cvScalar(0, 255, 0)); vector > contrs; contrs.resize(1); for(int k = 0; k < 4; k++) { //contrs[0] = quads_approx[k]; contrs[0].clear(); for(size_t j = 0; j < quads_approx[k].size(); j++) contrs[0].push_back(quads_approx[k][j]); drawContours(test, contrs, 0, CV_RGB(0, 0, 255), 1, 1, vector(), 2); circle(test, quad_corners[k], 0.5, CV_RGB(255, 0, 0)); } Mat test1 = test(Rect(corners[i].x - 30, corners[i].y - 30, 60, 60)); namedWindow("1", 1); imshow("1", test1); imwrite("test.jpg", test); waitKey(0); #endif #endif //_SUBPIX_VERBOSE } #if defined(_SUBPIX_VERBOSE) Mat test(img.size(), CV_32FC3); cvtColor(img, test, CV_GRAY2RGB); drawCircles(test, corners, radius); namedWindow("corners", 1); imshow("corners", test); waitKey(); #endif //_SUBPIX_VERBOSE return true; } }; // namespace std