/* slagts.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Subroutine */ int slagts_(integer *job, integer *n, real *a, real *b, real *c__, real *d__, integer *in, real *y, real *tol, integer *info) { /* System generated locals */ integer i__1; real r__1, r__2, r__3, r__4, r__5; /* Builtin functions */ double r_sign(real *, real *); /* Local variables */ integer k; real ak, eps, temp, pert, absak, sfmin; extern doublereal slamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *); real bignum; /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLAGTS may be used to solve one of the systems of equations */ /* (T - lambda*I)*x = y or (T - lambda*I)'*x = y, */ /* where T is an n by n tridiagonal matrix, for x, following the */ /* factorization of (T - lambda*I) as */ /* (T - lambda*I) = P*L*U , */ /* by routine SLAGTF. The choice of equation to be solved is */ /* controlled by the argument JOB, and in each case there is an option */ /* to perturb zero or very small diagonal elements of U, this option */ /* being intended for use in applications such as inverse iteration. */ /* Arguments */ /* ========= */ /* JOB (input) INTEGER */ /* Specifies the job to be performed by SLAGTS as follows: */ /* = 1: The equations (T - lambda*I)x = y are to be solved, */ /* but diagonal elements of U are not to be perturbed. */ /* = -1: The equations (T - lambda*I)x = y are to be solved */ /* and, if overflow would otherwise occur, the diagonal */ /* elements of U are to be perturbed. See argument TOL */ /* below. */ /* = 2: The equations (T - lambda*I)'x = y are to be solved, */ /* but diagonal elements of U are not to be perturbed. */ /* = -2: The equations (T - lambda*I)'x = y are to be solved */ /* and, if overflow would otherwise occur, the diagonal */ /* elements of U are to be perturbed. See argument TOL */ /* below. */ /* N (input) INTEGER */ /* The order of the matrix T. */ /* A (input) REAL array, dimension (N) */ /* On entry, A must contain the diagonal elements of U as */ /* returned from SLAGTF. */ /* B (input) REAL array, dimension (N-1) */ /* On entry, B must contain the first super-diagonal elements of */ /* U as returned from SLAGTF. */ /* C (input) REAL array, dimension (N-1) */ /* On entry, C must contain the sub-diagonal elements of L as */ /* returned from SLAGTF. */ /* D (input) REAL array, dimension (N-2) */ /* On entry, D must contain the second super-diagonal elements */ /* of U as returned from SLAGTF. */ /* IN (input) INTEGER array, dimension (N) */ /* On entry, IN must contain details of the matrix P as returned */ /* from SLAGTF. */ /* Y (input/output) REAL array, dimension (N) */ /* On entry, the right hand side vector y. */ /* On exit, Y is overwritten by the solution vector x. */ /* TOL (input/output) REAL */ /* On entry, with JOB .lt. 0, TOL should be the minimum */ /* perturbation to be made to very small diagonal elements of U. */ /* TOL should normally be chosen as about eps*norm(U), where eps */ /* is the relative machine precision, but if TOL is supplied as */ /* non-positive, then it is reset to eps*max( abs( u(i,j) ) ). */ /* If JOB .gt. 0 then TOL is not referenced. */ /* On exit, TOL is changed as described above, only if TOL is */ /* non-positive on entry. Otherwise TOL is unchanged. */ /* INFO (output) INTEGER */ /* = 0 : successful exit */ /* .lt. 0: if INFO = -i, the i-th argument had an illegal value */ /* .gt. 0: overflow would occur when computing the INFO(th) */ /* element of the solution vector x. This can only occur */ /* when JOB is supplied as positive and either means */ /* that a diagonal element of U is very small, or that */ /* the elements of the right-hand side vector y are very */ /* large. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --y; --in; --d__; --c__; --b; --a; /* Function Body */ *info = 0; if (abs(*job) > 2 || *job == 0) { *info = -1; } else if (*n < 0) { *info = -2; } if (*info != 0) { i__1 = -(*info); xerbla_("SLAGTS", &i__1); return 0; } if (*n == 0) { return 0; } eps = slamch_("Epsilon"); sfmin = slamch_("Safe minimum"); bignum = 1.f / sfmin; if (*job < 0) { if (*tol <= 0.f) { *tol = dabs(a[1]); if (*n > 1) { /* Computing MAX */ r__1 = *tol, r__2 = dabs(a[2]), r__1 = max(r__1,r__2), r__2 = dabs(b[1]); *tol = dmax(r__1,r__2); } i__1 = *n; for (k = 3; k <= i__1; ++k) { /* Computing MAX */ r__4 = *tol, r__5 = (r__1 = a[k], dabs(r__1)), r__4 = max( r__4,r__5), r__5 = (r__2 = b[k - 1], dabs(r__2)), r__4 = max(r__4,r__5), r__5 = (r__3 = d__[k - 2], dabs(r__3)); *tol = dmax(r__4,r__5); /* L10: */ } *tol *= eps; if (*tol == 0.f) { *tol = eps; } } } if (abs(*job) == 1) { i__1 = *n; for (k = 2; k <= i__1; ++k) { if (in[k - 1] == 0) { y[k] -= c__[k - 1] * y[k - 1]; } else { temp = y[k - 1]; y[k - 1] = y[k]; y[k] = temp - c__[k - 1] * y[k]; } /* L20: */ } if (*job == 1) { for (k = *n; k >= 1; --k) { if (k <= *n - 2) { temp = y[k] - b[k] * y[k + 1] - d__[k] * y[k + 2]; } else if (k == *n - 1) { temp = y[k] - b[k] * y[k + 1]; } else { temp = y[k]; } ak = a[k]; absak = dabs(ak); if (absak < 1.f) { if (absak < sfmin) { if (absak == 0.f || dabs(temp) * sfmin > absak) { *info = k; return 0; } else { temp *= bignum; ak *= bignum; } } else if (dabs(temp) > absak * bignum) { *info = k; return 0; } } y[k] = temp / ak; /* L30: */ } } else { for (k = *n; k >= 1; --k) { if (k <= *n - 2) { temp = y[k] - b[k] * y[k + 1] - d__[k] * y[k + 2]; } else if (k == *n - 1) { temp = y[k] - b[k] * y[k + 1]; } else { temp = y[k]; } ak = a[k]; pert = r_sign(tol, &ak); L40: absak = dabs(ak); if (absak < 1.f) { if (absak < sfmin) { if (absak == 0.f || dabs(temp) * sfmin > absak) { ak += pert; pert *= 2; goto L40; } else { temp *= bignum; ak *= bignum; } } else if (dabs(temp) > absak * bignum) { ak += pert; pert *= 2; goto L40; } } y[k] = temp / ak; /* L50: */ } } } else { /* Come to here if JOB = 2 or -2 */ if (*job == 2) { i__1 = *n; for (k = 1; k <= i__1; ++k) { if (k >= 3) { temp = y[k] - b[k - 1] * y[k - 1] - d__[k - 2] * y[k - 2]; } else if (k == 2) { temp = y[k] - b[k - 1] * y[k - 1]; } else { temp = y[k]; } ak = a[k]; absak = dabs(ak); if (absak < 1.f) { if (absak < sfmin) { if (absak == 0.f || dabs(temp) * sfmin > absak) { *info = k; return 0; } else { temp *= bignum; ak *= bignum; } } else if (dabs(temp) > absak * bignum) { *info = k; return 0; } } y[k] = temp / ak; /* L60: */ } } else { i__1 = *n; for (k = 1; k <= i__1; ++k) { if (k >= 3) { temp = y[k] - b[k - 1] * y[k - 1] - d__[k - 2] * y[k - 2]; } else if (k == 2) { temp = y[k] - b[k - 1] * y[k - 1]; } else { temp = y[k]; } ak = a[k]; pert = r_sign(tol, &ak); L70: absak = dabs(ak); if (absak < 1.f) { if (absak < sfmin) { if (absak == 0.f || dabs(temp) * sfmin > absak) { ak += pert; pert *= 2; goto L70; } else { temp *= bignum; ak *= bignum; } } else if (dabs(temp) > absak * bignum) { ak += pert; pert *= 2; goto L70; } } y[k] = temp / ak; /* L80: */ } } for (k = *n; k >= 2; --k) { if (in[k - 1] == 0) { y[k - 1] -= c__[k - 1] * y[k]; } else { temp = y[k - 1]; y[k - 1] = y[k]; y[k] = temp - c__[k - 1] * y[k]; } /* L90: */ } } /* End of SLAGTS */ return 0; } /* slagts_ */