/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "../precomp.hpp" #include "layers_common.hpp" #include #include #include namespace cv { namespace dnn { class PriorBoxLayerImpl : public PriorBoxLayer { public: bool getParameterDict(const LayerParams ¶ms, const std::string ¶meterName, DictValue& result) { if (!params.has(parameterName)) { return false; } result = params.get(parameterName); return true; } template T getParameter(const LayerParams ¶ms, const std::string ¶meterName, const size_t &idx=0, const bool required=true, const T& defaultValue=T()) { DictValue dictValue; bool success = getParameterDict(params, parameterName, dictValue); if(!success) { if(required) { std::string message = _layerName; message += " layer parameter does not contain "; message += parameterName; message += " parameter."; CV_Error(Error::StsBadArg, message); } else { return defaultValue; } } return dictValue.get(idx); } void getAspectRatios(const LayerParams ¶ms) { DictValue aspectRatioParameter; bool aspectRatioRetieved = getParameterDict(params, "aspect_ratio", aspectRatioParameter); CV_Assert(aspectRatioRetieved); for (int i = 0; i < aspectRatioParameter.size(); ++i) { float aspectRatio = aspectRatioParameter.get(i); bool alreadyExists = false; for (size_t j = 0; j < _aspectRatios.size(); ++j) { if (fabs(aspectRatio - _aspectRatios[j]) < 1e-6) { alreadyExists = true; break; } } if (!alreadyExists) { _aspectRatios.push_back(aspectRatio); if (_flip) { _aspectRatios.push_back(1./aspectRatio); } } } } void getVariance(const LayerParams ¶ms) { DictValue varianceParameter; bool varianceParameterRetrieved = getParameterDict(params, "variance", varianceParameter); CV_Assert(varianceParameterRetrieved); int varianceSize = varianceParameter.size(); if (varianceSize > 1) { // Must and only provide 4 variance. CV_Assert(varianceSize == 4); for (int i = 0; i < varianceSize; ++i) { float variance = varianceParameter.get(i); CV_Assert(variance > 0); _variance.push_back(variance); } } else { if (varianceSize == 1) { float variance = varianceParameter.get(0); CV_Assert(variance > 0); _variance.push_back(variance); } else { // Set default to 0.1. _variance.push_back(0.1f); } } } PriorBoxLayerImpl(const LayerParams ¶ms) { setParamsFrom(params); _minSize = getParameter(params, "min_size"); CV_Assert(_minSize > 0); _flip = getParameter(params, "flip"); _clip = getParameter(params, "clip"); _aspectRatios.clear(); _aspectRatios.push_back(1.); getAspectRatios(params); getVariance(params); _numPriors = _aspectRatios.size(); _maxSize = -1; if (params.has("max_size")) { _maxSize = params.get("max_size").get(0); CV_Assert(_maxSize > _minSize); _numPriors += 1; } if (params.has("step_h") || params.has("step_w")) { CV_Assert(!params.has("step")); _stepY = getParameter(params, "step_h"); CV_Assert(_stepY > 0.); _stepX = getParameter(params, "step_w"); CV_Assert(_stepX > 0.); } else if (params.has("step")) { const float step = getParameter(params, "step"); CV_Assert(step > 0); _stepY = step; _stepX = step; } else { _stepY = 0; _stepX = 0; } } bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, std::vector &internals) const { CV_Assert(inputs.size() == 2); int layerHeight = inputs[0][2]; int layerWidth = inputs[0][3]; // Since all images in a batch has same height and width, we only need to // generate one set of priors which can be shared across all images. size_t outNum = 1; // 2 channels. First channel stores the mean of each prior coordinate. // Second channel stores the variance of each prior coordinate. size_t outChannels = 2; outputs.resize(1, shape(outNum, outChannels, layerHeight * layerWidth * _numPriors * 4)); return false; } void forward(std::vector &inputs, std::vector &outputs, std::vector &internals) { int _layerWidth = inputs[0]->size[3]; int _layerHeight = inputs[0]->size[2]; int _imageWidth = inputs[1]->size[3]; int _imageHeight = inputs[1]->size[2]; float stepX, stepY; if (_stepX == 0 || _stepY == 0) { stepX = static_cast(_imageWidth) / _layerWidth; stepY = static_cast(_imageHeight) / _layerHeight; } else { stepX = _stepX; stepY = _stepY; } int _outChannelSize = _layerHeight * _layerWidth * _numPriors * 4; float* outputPtr = outputs[0].ptr(); // first prior: aspect_ratio = 1, size = min_size int idx = 0; for (size_t h = 0; h < _layerHeight; ++h) { for (size_t w = 0; w < _layerWidth; ++w) { _boxWidth = _boxHeight = _minSize; float center_x = (w + 0.5) * stepX; float center_y = (h + 0.5) * stepY; // xmin outputPtr[idx++] = (center_x - _boxWidth / 2.) / _imageWidth; // ymin outputPtr[idx++] = (center_y - _boxHeight / 2.) / _imageHeight; // xmax outputPtr[idx++] = (center_x + _boxWidth / 2.) / _imageWidth; // ymax outputPtr[idx++] = (center_y + _boxHeight / 2.) / _imageHeight; if (_maxSize > 0) { // second prior: aspect_ratio = 1, size = sqrt(min_size * max_size) _boxWidth = _boxHeight = sqrt(_minSize * _maxSize); // xmin outputPtr[idx++] = (center_x - _boxWidth / 2.) / _imageWidth; // ymin outputPtr[idx++] = (center_y - _boxHeight / 2.) / _imageHeight; // xmax outputPtr[idx++] = (center_x + _boxWidth / 2.) / _imageWidth; // ymax outputPtr[idx++] = (center_y + _boxHeight / 2.) / _imageHeight; } // rest of priors for (size_t r = 0; r < _aspectRatios.size(); ++r) { float ar = _aspectRatios[r]; if (fabs(ar - 1.) < 1e-6) { continue; } _boxWidth = _minSize * sqrt(ar); _boxHeight = _minSize / sqrt(ar); // xmin outputPtr[idx++] = (center_x - _boxWidth / 2.) / _imageWidth; // ymin outputPtr[idx++] = (center_y - _boxHeight / 2.) / _imageHeight; // xmax outputPtr[idx++] = (center_x + _boxWidth / 2.) / _imageWidth; // ymax outputPtr[idx++] = (center_y + _boxHeight / 2.) / _imageHeight; } } } // clip the prior's coordidate such that it is within [0, 1] if (_clip) { for (size_t d = 0; d < _outChannelSize; ++d) { outputPtr[d] = std::min(std::max(outputPtr[d], 0.), 1.); } } // set the variance. outputPtr = outputs[0].ptr(0, 1); if(_variance.size() == 1) { Mat secondChannel(outputs[0].size[2], outputs[0].size[3], CV_32F, outputPtr); secondChannel.setTo(Scalar(_variance[0])); } else { int count = 0; for (size_t h = 0; h < _layerHeight; ++h) { for (size_t w = 0; w < _layerWidth; ++w) { for (size_t i = 0; i < _numPriors; ++i) { for (int j = 0; j < 4; ++j) { outputPtr[count] = _variance[j]; ++count; } } } } } } virtual int64 getFLOPS(const std::vector &inputs, const std::vector &outputs) const { (void)outputs; // suppress unused variable warning long flops = 0; for (int i = 0; i < inputs.size(); i++) { flops += total(inputs[i], 2) * _numPriors * 4; } return flops; } float _minSize; float _maxSize; float _boxWidth; float _boxHeight; float _stepX, _stepY; std::vector _aspectRatios; std::vector _variance; bool _flip; bool _clip; size_t _numPriors; static const size_t _numAxes = 4; static const std::string _layerName; }; const std::string PriorBoxLayerImpl::_layerName = std::string("PriorBox"); Ptr PriorBoxLayer::create(const LayerParams ¶ms) { return Ptr(new PriorBoxLayerImpl(params)); } } }