/* slals0.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static real c_b5 = -1.f; static integer c__1 = 1; static real c_b11 = 1.f; static real c_b13 = 0.f; static integer c__0 = 0; /* Subroutine */ int slals0_(integer *icompq, integer *nl, integer *nr, integer *sqre, integer *nrhs, real *b, integer *ldb, real *bx, integer *ldbx, integer *perm, integer *givptr, integer *givcol, integer *ldgcol, real *givnum, integer *ldgnum, real *poles, real * difl, real *difr, real *z__, integer *k, real *c__, real *s, real * work, integer *info) { /* System generated locals */ integer givcol_dim1, givcol_offset, b_dim1, b_offset, bx_dim1, bx_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset, i__1, i__2; real r__1; /* Local variables */ integer i__, j, m, n; real dj; integer nlp1; real temp; extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, integer *, real *, real *); extern doublereal snrm2_(integer *, real *, integer *); real diflj, difrj, dsigj; extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *), sgemv_(char *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *), scopy_( integer *, real *, integer *, real *, integer *); extern doublereal slamc3_(real *, real *); extern /* Subroutine */ int xerbla_(char *, integer *); real dsigjp; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLALS0 applies back the multiplying factors of either the left or the */ /* right singular vector matrix of a diagonal matrix appended by a row */ /* to the right hand side matrix B in solving the least squares problem */ /* using the divide-and-conquer SVD approach. */ /* For the left singular vector matrix, three types of orthogonal */ /* matrices are involved: */ /* (1L) Givens rotations: the number of such rotations is GIVPTR; the */ /* pairs of columns/rows they were applied to are stored in GIVCOL; */ /* and the C- and S-values of these rotations are stored in GIVNUM. */ /* (2L) Permutation. The (NL+1)-st row of B is to be moved to the first */ /* row, and for J=2:N, PERM(J)-th row of B is to be moved to the */ /* J-th row. */ /* (3L) The left singular vector matrix of the remaining matrix. */ /* For the right singular vector matrix, four types of orthogonal */ /* matrices are involved: */ /* (1R) The right singular vector matrix of the remaining matrix. */ /* (2R) If SQRE = 1, one extra Givens rotation to generate the right */ /* null space. */ /* (3R) The inverse transformation of (2L). */ /* (4R) The inverse transformation of (1L). */ /* Arguments */ /* ========= */ /* ICOMPQ (input) INTEGER */ /* Specifies whether singular vectors are to be computed in */ /* factored form: */ /* = 0: Left singular vector matrix. */ /* = 1: Right singular vector matrix. */ /* NL (input) INTEGER */ /* The row dimension of the upper block. NL >= 1. */ /* NR (input) INTEGER */ /* The row dimension of the lower block. NR >= 1. */ /* SQRE (input) INTEGER */ /* = 0: the lower block is an NR-by-NR square matrix. */ /* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */ /* The bidiagonal matrix has row dimension N = NL + NR + 1, */ /* and column dimension M = N + SQRE. */ /* NRHS (input) INTEGER */ /* The number of columns of B and BX. NRHS must be at least 1. */ /* B (input/output) REAL array, dimension ( LDB, NRHS ) */ /* On input, B contains the right hand sides of the least */ /* squares problem in rows 1 through M. On output, B contains */ /* the solution X in rows 1 through N. */ /* LDB (input) INTEGER */ /* The leading dimension of B. LDB must be at least */ /* max(1,MAX( M, N ) ). */ /* BX (workspace) REAL array, dimension ( LDBX, NRHS ) */ /* LDBX (input) INTEGER */ /* The leading dimension of BX. */ /* PERM (input) INTEGER array, dimension ( N ) */ /* The permutations (from deflation and sorting) applied */ /* to the two blocks. */ /* GIVPTR (input) INTEGER */ /* The number of Givens rotations which took place in this */ /* subproblem. */ /* GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 ) */ /* Each pair of numbers indicates a pair of rows/columns */ /* involved in a Givens rotation. */ /* LDGCOL (input) INTEGER */ /* The leading dimension of GIVCOL, must be at least N. */ /* GIVNUM (input) REAL array, dimension ( LDGNUM, 2 ) */ /* Each number indicates the C or S value used in the */ /* corresponding Givens rotation. */ /* LDGNUM (input) INTEGER */ /* The leading dimension of arrays DIFR, POLES and */ /* GIVNUM, must be at least K. */ /* POLES (input) REAL array, dimension ( LDGNUM, 2 ) */ /* On entry, POLES(1:K, 1) contains the new singular */ /* values obtained from solving the secular equation, and */ /* POLES(1:K, 2) is an array containing the poles in the secular */ /* equation. */ /* DIFL (input) REAL array, dimension ( K ). */ /* On entry, DIFL(I) is the distance between I-th updated */ /* (undeflated) singular value and the I-th (undeflated) old */ /* singular value. */ /* DIFR (input) REAL array, dimension ( LDGNUM, 2 ). */ /* On entry, DIFR(I, 1) contains the distances between I-th */ /* updated (undeflated) singular value and the I+1-th */ /* (undeflated) old singular value. And DIFR(I, 2) is the */ /* normalizing factor for the I-th right singular vector. */ /* Z (input) REAL array, dimension ( K ) */ /* Contain the components of the deflation-adjusted updating row */ /* vector. */ /* K (input) INTEGER */ /* Contains the dimension of the non-deflated matrix, */ /* This is the order of the related secular equation. 1 <= K <=N. */ /* C (input) REAL */ /* C contains garbage if SQRE =0 and the C-value of a Givens */ /* rotation related to the right null space if SQRE = 1. */ /* S (input) REAL */ /* S contains garbage if SQRE =0 and the S-value of a Givens */ /* rotation related to the right null space if SQRE = 1. */ /* WORK (workspace) REAL array, dimension ( K ) */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Ming Gu and Ren-Cang Li, Computer Science Division, University of */ /* California at Berkeley, USA */ /* Osni Marques, LBNL/NERSC, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; bx_dim1 = *ldbx; bx_offset = 1 + bx_dim1; bx -= bx_offset; --perm; givcol_dim1 = *ldgcol; givcol_offset = 1 + givcol_dim1; givcol -= givcol_offset; difr_dim1 = *ldgnum; difr_offset = 1 + difr_dim1; difr -= difr_offset; poles_dim1 = *ldgnum; poles_offset = 1 + poles_dim1; poles -= poles_offset; givnum_dim1 = *ldgnum; givnum_offset = 1 + givnum_dim1; givnum -= givnum_offset; --difl; --z__; --work; /* Function Body */ *info = 0; if (*icompq < 0 || *icompq > 1) { *info = -1; } else if (*nl < 1) { *info = -2; } else if (*nr < 1) { *info = -3; } else if (*sqre < 0 || *sqre > 1) { *info = -4; } n = *nl + *nr + 1; if (*nrhs < 1) { *info = -5; } else if (*ldb < n) { *info = -7; } else if (*ldbx < n) { *info = -9; } else if (*givptr < 0) { *info = -11; } else if (*ldgcol < n) { *info = -13; } else if (*ldgnum < n) { *info = -15; } else if (*k < 1) { *info = -20; } if (*info != 0) { i__1 = -(*info); xerbla_("SLALS0", &i__1); return 0; } m = n + *sqre; nlp1 = *nl + 1; if (*icompq == 0) { /* Apply back orthogonal transformations from the left. */ /* Step (1L): apply back the Givens rotations performed. */ i__1 = *givptr; for (i__ = 1; i__ <= i__1; ++i__) { srot_(nrhs, &b[givcol[i__ + (givcol_dim1 << 1)] + b_dim1], ldb, & b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[i__ + (givnum_dim1 << 1)], &givnum[i__ + givnum_dim1]); /* L10: */ } /* Step (2L): permute rows of B. */ scopy_(nrhs, &b[nlp1 + b_dim1], ldb, &bx[bx_dim1 + 1], ldbx); i__1 = n; for (i__ = 2; i__ <= i__1; ++i__) { scopy_(nrhs, &b[perm[i__] + b_dim1], ldb, &bx[i__ + bx_dim1], ldbx); /* L20: */ } /* Step (3L): apply the inverse of the left singular vector */ /* matrix to BX. */ if (*k == 1) { scopy_(nrhs, &bx[bx_offset], ldbx, &b[b_offset], ldb); if (z__[1] < 0.f) { sscal_(nrhs, &c_b5, &b[b_offset], ldb); } } else { i__1 = *k; for (j = 1; j <= i__1; ++j) { diflj = difl[j]; dj = poles[j + poles_dim1]; dsigj = -poles[j + (poles_dim1 << 1)]; if (j < *k) { difrj = -difr[j + difr_dim1]; dsigjp = -poles[j + 1 + (poles_dim1 << 1)]; } if (z__[j] == 0.f || poles[j + (poles_dim1 << 1)] == 0.f) { work[j] = 0.f; } else { work[j] = -poles[j + (poles_dim1 << 1)] * z__[j] / diflj / (poles[j + (poles_dim1 << 1)] + dj); } i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { if (z__[i__] == 0.f || poles[i__ + (poles_dim1 << 1)] == 0.f) { work[i__] = 0.f; } else { work[i__] = poles[i__ + (poles_dim1 << 1)] * z__[i__] / (slamc3_(&poles[i__ + (poles_dim1 << 1)], & dsigj) - diflj) / (poles[i__ + (poles_dim1 << 1)] + dj); } /* L30: */ } i__2 = *k; for (i__ = j + 1; i__ <= i__2; ++i__) { if (z__[i__] == 0.f || poles[i__ + (poles_dim1 << 1)] == 0.f) { work[i__] = 0.f; } else { work[i__] = poles[i__ + (poles_dim1 << 1)] * z__[i__] / (slamc3_(&poles[i__ + (poles_dim1 << 1)], & dsigjp) + difrj) / (poles[i__ + (poles_dim1 << 1)] + dj); } /* L40: */ } work[1] = -1.f; temp = snrm2_(k, &work[1], &c__1); sgemv_("T", k, nrhs, &c_b11, &bx[bx_offset], ldbx, &work[1], & c__1, &c_b13, &b[j + b_dim1], ldb); slascl_("G", &c__0, &c__0, &temp, &c_b11, &c__1, nrhs, &b[j + b_dim1], ldb, info); /* L50: */ } } /* Move the deflated rows of BX to B also. */ if (*k < max(m,n)) { i__1 = n - *k; slacpy_("A", &i__1, nrhs, &bx[*k + 1 + bx_dim1], ldbx, &b[*k + 1 + b_dim1], ldb); } } else { /* Apply back the right orthogonal transformations. */ /* Step (1R): apply back the new right singular vector matrix */ /* to B. */ if (*k == 1) { scopy_(nrhs, &b[b_offset], ldb, &bx[bx_offset], ldbx); } else { i__1 = *k; for (j = 1; j <= i__1; ++j) { dsigj = poles[j + (poles_dim1 << 1)]; if (z__[j] == 0.f) { work[j] = 0.f; } else { work[j] = -z__[j] / difl[j] / (dsigj + poles[j + poles_dim1]) / difr[j + (difr_dim1 << 1)]; } i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { if (z__[j] == 0.f) { work[i__] = 0.f; } else { r__1 = -poles[i__ + 1 + (poles_dim1 << 1)]; work[i__] = z__[j] / (slamc3_(&dsigj, &r__1) - difr[ i__ + difr_dim1]) / (dsigj + poles[i__ + poles_dim1]) / difr[i__ + (difr_dim1 << 1)]; } /* L60: */ } i__2 = *k; for (i__ = j + 1; i__ <= i__2; ++i__) { if (z__[j] == 0.f) { work[i__] = 0.f; } else { r__1 = -poles[i__ + (poles_dim1 << 1)]; work[i__] = z__[j] / (slamc3_(&dsigj, &r__1) - difl[ i__]) / (dsigj + poles[i__ + poles_dim1]) / difr[i__ + (difr_dim1 << 1)]; } /* L70: */ } sgemv_("T", k, nrhs, &c_b11, &b[b_offset], ldb, &work[1], & c__1, &c_b13, &bx[j + bx_dim1], ldbx); /* L80: */ } } /* Step (2R): if SQRE = 1, apply back the rotation that is */ /* related to the right null space of the subproblem. */ if (*sqre == 1) { scopy_(nrhs, &b[m + b_dim1], ldb, &bx[m + bx_dim1], ldbx); srot_(nrhs, &bx[bx_dim1 + 1], ldbx, &bx[m + bx_dim1], ldbx, c__, s); } if (*k < max(m,n)) { i__1 = n - *k; slacpy_("A", &i__1, nrhs, &b[*k + 1 + b_dim1], ldb, &bx[*k + 1 + bx_dim1], ldbx); } /* Step (3R): permute rows of B. */ scopy_(nrhs, &bx[bx_dim1 + 1], ldbx, &b[nlp1 + b_dim1], ldb); if (*sqre == 1) { scopy_(nrhs, &bx[m + bx_dim1], ldbx, &b[m + b_dim1], ldb); } i__1 = n; for (i__ = 2; i__ <= i__1; ++i__) { scopy_(nrhs, &bx[i__ + bx_dim1], ldbx, &b[perm[i__] + b_dim1], ldb); /* L90: */ } /* Step (4R): apply back the Givens rotations performed. */ for (i__ = *givptr; i__ >= 1; --i__) { r__1 = -givnum[i__ + givnum_dim1]; srot_(nrhs, &b[givcol[i__ + (givcol_dim1 << 1)] + b_dim1], ldb, & b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[i__ + (givnum_dim1 << 1)], &r__1); /* L100: */ } } return 0; /* End of SLALS0 */ } /* slals0_ */